A New Integrable Equation with Peakon Solutions
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 170-183 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a new partial differential equation recently obtained by Degasperis and Procesi using the method of asymptotic integrability; this equation has a form similar to the Camassa–Holm shallow water wave equation. We prove the exact integrability of the new equation by constructing its Lax pair and explain its relation to a negative flow in the Kaup–Kupershmidt hierarchy via a reciprocal transformation. The infinite sequence of conserved quantities is derived together with a proposed bi-Hamiltonian structure. The equation admits exact solutions as a superposition of multipeakons, and we describe the integrable finite-dimensional peakon dynamics and compare it with the analogous results for Camassa–Holm peakons.
Keywords: peakons, reciprocal transformations, weak solutions.
@article{TMF_2002_133_2_a3,
     author = {A. Degasperis and D. D. Holm and A. Hone},
     title = {A~New {Integrable} {Equation} with {Peakon} {Solutions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {170--183},
     year = {2002},
     volume = {133},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a3/}
}
TY  - JOUR
AU  - A. Degasperis
AU  - D. D. Holm
AU  - A. Hone
TI  - A New Integrable Equation with Peakon Solutions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 170
EP  - 183
VL  - 133
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a3/
LA  - ru
ID  - TMF_2002_133_2_a3
ER  - 
%0 Journal Article
%A A. Degasperis
%A D. D. Holm
%A A. Hone
%T A New Integrable Equation with Peakon Solutions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 170-183
%V 133
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a3/
%G ru
%F TMF_2002_133_2_a3
A. Degasperis; D. D. Holm; A. Hone. A New Integrable Equation with Peakon Solutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 170-183. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a3/

[1] R. Camassa, D. D. Holm, Phys. Rev. Lett., 71 (1993), 1661–1664 | DOI | MR | Zbl

[2] R. Camassa, D. D. Holm, J. M. Hyman, Adv. Appl. Mech., 31 (1994), 1–33 | DOI | Zbl

[3] B. Fuchssteiner, Physica D, 95 (1996), 229–243 | DOI | MR | Zbl

[4] H. Dullin, G. Gottwald, D. D. Holm, Phys. Rev. Lett., 87 (2001), 1945–1948 | DOI

[5] A. N. W. Hone, Appl. Math. Lett., 13 (2000), 37–42 ; R. A. Kraenkel, A. Zenchuk, Phys. Lett. A, 260 (1999), 218–224 | DOI | MR | Zbl | DOI | MR | Zbl

[6] A. Degasperis, M. Procesi, “Asymptotic integrability”, Symmetry and Perturbation Theory, eds. A. Degasperis, G. Gaeta, World Scientific, Singapore, 1999, 23–37 | MR | Zbl

[7] C. Gilson, A. Pickering, J. Phys. A, 28 (1995), 2871–2888 | DOI | MR | Zbl

[8] A. Ramani, B. Dorizzi, B. Grammaticos, Phys. Rev. Lett., 49 (1982), 1538–1541 | DOI | MR

[9] A. N. W. Hone, J. Phys. A, 32 (1999), L307–L314 | DOI | MR | Zbl

[10] A. Degasperis, A. N. W. Hone, D. D. Holm, A Class of Equations with Peakon and Pulson Solutions, in preparation

[11] P. R. Gordoa, A. Pickering, J. Math. Phys., 40 (1999), 5749–5786 | DOI | MR | Zbl

[12] J. G. Kingston, C. Rogers, Phys. Lett. A, 92 (1982), 261–264 ; C. Rogers, “Reciprocal transformations and their applications”, Nonlinear Evolutions, ed. J. Leon, World Scientific, Singapore, 1988, 109–123 ; C. Rogers, “Bäcklund transformations in soliton theory”, Soliton Theory: a Survey of Results, ed. A. P. Fordy, Manchester University Press, Manchester, 1990, 97–130 | DOI | MR | MR | MR

[13] A. N. W. Hone, Phys. Lett. A, 263 (1999), 347–354 | DOI | MR | Zbl

[14] J. Weiss, M. Tabor, G. J. Carnevale, J. Math. Phys., 24 (1983), 522–526 | DOI | MR | Zbl

[15] G. Tzitzeica, C. R. Acad. Sci. Paris, 150 (1910), 955–956; 1227–1229 | Zbl

[16] R. K. Dodd, R. K. Bullough, Proc. Roy. Soc. London A, 352 (1977), 481–502 | DOI | MR

[17] P. Olver, P. Rosenau, Phys. Rev. E, 53 (1996), 1900–1906 ; I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, John Wiley Sons, New York, 1993 | DOI | MR | MR

[18] O. Fringer, D. D. Holm, Physica D, 150 (2001), 237–263 | DOI | MR | Zbl