Movable Singularities of Solutions of Difference Equations in Relation to Solvability and a Study of a Superstable Fixed Point
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 160-169 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review applications of exponential asymptotics and analyzable function theory to difference equations in defining an analogue of the Painlevé property for them, and we sketch the conclusions about the solvability properties of first-order autonomous difference equations. If the Painlevé property is present, the equations are explicitly solvable; otherwise, under additional assumptions, the integrals of motion develop singularity barriers. We apply the method to the logistic map $x_{n+1}=ax_n(1-x_n)$, where we find that the only cases with the Painlevé property are $a=-2,0,2$ and $4$, for which explicit solutions indeed exist; otherwise, an associated conjugation map develops singularity barriers.
Keywords: Borel summation, exponential asymptotics, singularity analysis
Mots-clés : Painlevé transcendents.
@article{TMF_2002_133_2_a2,
     author = {O. Costin and M. Kruskal},
     title = {Movable {Singularities} of {Solutions} of {Difference} {Equations} in {Relation} to {Solvability} and {a~Study} of {a~Superstable} {Fixed} {Point}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {160--169},
     year = {2002},
     volume = {133},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a2/}
}
TY  - JOUR
AU  - O. Costin
AU  - M. Kruskal
TI  - Movable Singularities of Solutions of Difference Equations in Relation to Solvability and a Study of a Superstable Fixed Point
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 160
EP  - 169
VL  - 133
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a2/
LA  - ru
ID  - TMF_2002_133_2_a2
ER  - 
%0 Journal Article
%A O. Costin
%A M. Kruskal
%T Movable Singularities of Solutions of Difference Equations in Relation to Solvability and a Study of a Superstable Fixed Point
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 160-169
%V 133
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a2/
%G ru
%F TMF_2002_133_2_a2
O. Costin; M. Kruskal. Movable Singularities of Solutions of Difference Equations in Relation to Solvability and a Study of a Superstable Fixed Point. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 160-169. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a2/

[1] O. Costin, M. D. Kruskal, “Equivalent of the Painlevé property for certain classes of difference equations and study of their solvability” (to appear)

[2] B. L. J. Braaksma, Ann. Inst. Fourier, 42:3 (1992), 517–540 | DOI | MR | Zbl

[3] B. L. J. Braaksma, “Transseries for a class of nonlinear difference equations.”, J. Diff. Equat. (to appear) | MR

[4] O. Costin, Int. Math. Res. Notices, 1995, no. 8, 377–417 ; Duke Math. J., 93:2 (1998), 289–344 ; O. Costin, M. D. Kruskal, Proc. Roy. Soc. London A, 455 (1999), 1931–1956 ; 452:1948 (1996), 1057–1085 ; O. Costin, Commun. Pure Appl. Math., 52 (1999), 0461–0478 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | 3.0.CO;2-T class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[5] O. Costin, R. D. Costin, Invent. Math., 145:3 (2001), 425–485 | DOI | MR | Zbl

[6] O. Costin, S. Tanveer, Commun. Pure Appl. Math., 53 (2000), 1092–1117 ; “Existence and uniqueness of solutions of nonlinear evolution systems of $n$th-order partial differential equations in the complex plane”, submitted; J. Écalle, Finitude des cycles limites et accéléro-sommation de l'application de retour, Preprint 90-36, Universite de Paris-Sud, Paris, 1990 ; Publ. Math. Orsay, 1981, no. 81-05; M. D. Kruskal, H. Segur, Stud. Appl. Math., 85:2 (1991), 129–181 ; H. Segur, S. Tanveer, H. Levine (eds.), Asymptotics Beyond All Orders, Plenum, New York, 1991 | 3.0.CO;2-Z class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl | MR | DOI | MR | Zbl

[7] M. D. Kruskal, P. A. Clarkson, Stud. Appl. Math., 86:2 (1992), 87–165 | DOI | MR | Zbl

[8] N. Joshi, “Irregular singular behavior in the first discrete Painlevé equation”, SIDE III-Symmetries and Integrability of Difference Equations, CRM Proc. Lecture Notes, 25, eds. D. Levi, O. Ragnisco, AMS, Providence, RI, 2000, 237–243 | DOI | MR | Zbl

[9] M. J. Ablowitz, R. Halburd, B. Herbst, Nonlinearity, 13 (2000), 889–905 | DOI | MR | Zbl

[10] B. Grammaticos, A. Ramani, “Discrete Painlevé equations: derivation and properties”, Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, NATO ASI. Ser. C, 413, ed. P. A. Clarkson, Kluwer, Dordrecht, 1993, 299–313 | MR | Zbl

[11] R. Conte, M. Musette, “Rules of discretization for Painlevé equations”, Theory of Nonlinear Special Functions: The Pailevé Transcendents, eds. L. Vinet and P. Winternitz, Springer, Berlin, 1998

[12] A. F. Beardon, Iteration of Rational Functions, Springer, New York, 1991 | MR | Zbl