Well-Posed Boundary Value Problems for Integrable Evolution Equations on a Finite Interval
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 327-336 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider boundary value problems posed on an interval $[0,L]$ for an arbitrary linear evolution equation in one space dimension with spatial derivatives of order $n$. We characterize a class of such problems that admit a unique solution and are well posed in this sense. Such well-posed boundary value problems are obtained by prescribing $N$ conditions at $x=0$ and $n-N$ conditions at $x=L$, where $N$ depends on $n$ and on the sign of the highest-degree coefficient $n$ in the dispersion relation of the equation. For the problems in this class, we give a spectrally decomposed integral representation of the solution; moreover, we show that these are the only problems that admit such a representation. These results can be used to establish the well-posedness, at least locally in time, of some physically relevant nonlinear evolution equations in one space dimension.
Keywords: boundary value problems, Riemann–Hilbert problem, spectral analysis.
@article{TMF_2002_133_2_a16,
     author = {B. Pelloni},
     title = {Well-Posed {Boundary} {Value} {Problems} for {Integrable} {Evolution} {Equations} on {a~Finite} {Interval}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {327--336},
     year = {2002},
     volume = {133},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a16/}
}
TY  - JOUR
AU  - B. Pelloni
TI  - Well-Posed Boundary Value Problems for Integrable Evolution Equations on a Finite Interval
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 327
EP  - 336
VL  - 133
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a16/
LA  - ru
ID  - TMF_2002_133_2_a16
ER  - 
%0 Journal Article
%A B. Pelloni
%T Well-Posed Boundary Value Problems for Integrable Evolution Equations on a Finite Interval
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 327-336
%V 133
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a16/
%G ru
%F TMF_2002_133_2_a16
B. Pelloni. Well-Posed Boundary Value Problems for Integrable Evolution Equations on a Finite Interval. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 327-336. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a16/

[1] A. S. Fokas, B. Pelloni, Math. Proc. Camb. Philos. Soc., 131 (2001), 521 | MR | Zbl

[2] B. Pelloni, “Well posed boundary value problems for linear evolution equations on a finite interval.”, Math. Proc. Cam. Phil. Soc. (to appear) | MR

[3] A. S. Fokas, J. Math. Phys., 41 (2000), 4188 | DOI | MR | Zbl

[4] A. S. Fokas, Proc. Roy. Soc. London. A, 457 (2001), 371 | DOI | MR | Zbl

[5] A. S. Fokas, L. Y. Sung, “Initial boundary value problems for linear evolution equations on the half line” (to appear)

[6] A. S. Fokas, A. R. Its, “The nonlinear Schrödinger equation on a finite interval” (to appear)

[7] D. Antonopoulos, V. A. Dougalis, A. S. Fokas, B. Pelloni, “Boundary value problems for Boussinesq type system”, J. Math. Anal. Appl., 2002, submitted | MR