The Bi-Hamiltonian Theory of the Harry Dym Equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 311-326 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe how the Harry Dym equation fits into the the bi-Hamiltonian formalism for the Korteweg–de Vries equation and other soliton equations. This is achieved using a certain Poisson pencil constructed from two compatible Poisson structures. We obtain an analogue of the Kadomtsev–Petviashivili hierarchy whose reduction leads to the Harry Dym hierarchy. We call such a system the HD–KP hierarchy. We then construct an infinite system of ordinary differential equations (in infinitely many variables) that is equivalent to the HD–KP hierarchy. Its role is analogous to the role of the Central System in the Kadomtsev–Petviashivili hierarchy.
Keywords: $bi$-Hamiltonian formalism, Harry Dym equation, completely integrable systems.
@article{TMF_2002_133_2_a15,
     author = {M. Pedroni and V. Sciacca and J. P. Zubelli},
     title = {The {Bi-Hamiltonian} {Theory} of the {Harry} {Dym} {Equation}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {311--326},
     year = {2002},
     volume = {133},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a15/}
}
TY  - JOUR
AU  - M. Pedroni
AU  - V. Sciacca
AU  - J. P. Zubelli
TI  - The Bi-Hamiltonian Theory of the Harry Dym Equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 311
EP  - 326
VL  - 133
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a15/
LA  - ru
ID  - TMF_2002_133_2_a15
ER  - 
%0 Journal Article
%A M. Pedroni
%A V. Sciacca
%A J. P. Zubelli
%T The Bi-Hamiltonian Theory of the Harry Dym Equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 311-326
%V 133
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a15/
%G ru
%F TMF_2002_133_2_a15
M. Pedroni; V. Sciacca; J. P. Zubelli. The Bi-Hamiltonian Theory of the Harry Dym Equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 311-326. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a15/

[1] M. Kruskal, “Nonlinear wave equations”, Dynamical Systems, Theory and Applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), Lecture Notes in Phys., 38, ed. J. Moser, Springer, Berlin, 1975, 310–354 | DOI | MR

[2] P. C. Sabatier, Lett. Nuovo Cimento (2), 26(15) (1979), 483–486 ; P. C. Sabatier, 26(15) (1979), 477–482 ; P. C. Sabatier, “Around the classical string problem”, Nonlinear Evolution Equations and Dynamical Systems, Proc. Meet. (Univ. Lecce, June 20–23, 1979), Lect. Notes Phys., 120, eds. M. Boiti et al., Springer, Berlin, 1980, 85–102 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR

[3] C. Rogers, Phys. Lett. A, 120:1 (1987), 15–18 ; Ben Yu Guo, C. Rogers, Sci. China Ser. A, 32:3 (1989), 283–295 ; V. G. Dubrovsky, B. G. Konopelchenko, J. Phys. A, 27(13) (1994), 4619–4628 ; B. G. Konopelchenko, Jyh-Hao Lee, Teoret. Mat. Fiz., 99:2 (1994), 337–344 ; O. Ragnisco, S. Rauch-Wojciechowski, J. Math. Phys., 35:2 (1994), 834–847 ; B. G. Konopelchenko, Jyh-Hao Lee, Phys. D, 81:1–2 (1995), 32–43 | DOI | MR | MR | Zbl | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[4] W. Oevel, S. Carillo, J. Math. Anal. Appl., 217:1 (1998), 161–178 ; 179–199 | DOI | MR | Zbl

[5] P. Casati, G. Falqui, F. Magri, M. Pedroni, J. Math. Phys., 38:9 (1997), 4606–4628 | DOI | MR | Zbl

[6] G. Falqui, F. Magri, M. Pedroni, Commun. Math. Phys., 197:2 (1998), 303–324 | DOI | MR | Zbl

[7] P. Casati, G. Falqui, F. Magri, M. Pedroni, J. Geom. Phys., 26:3–4 (1998), 291–310 | DOI | MR | Zbl

[8] F. Magri, M. Pedroni, J. P. Zubelli, Commun. Math. Phys., 188:2 (1997), 305–325 | DOI | MR | Zbl

[9] G. Falki, F. Magri, M. Pedroni, Kh. P. Zubelli, TMF, 122:1 (2000), 23–36 | DOI | MR

[10] P. Casati, G. Falqui, F. Magri, M. Pedroni, Lett. Math. Phys., 41:3 (1997), 291–305 | DOI | MR | Zbl

[11] G. Falqui, M. Pedroni, F. Magri, P. Casati, Soliton equations, bi-{H}amiltonian manifolds and integrability, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1997 | MR

[12] P. Casati, G. Falqui, F. Magri, M. Pedroni, J. P. Zubelli, Mat. Contemp., 15 (1998), 45–65 | MR | Zbl

[13] F. Magri, M. Pedroni, “Kd{V} equations, {K}{P} equations, and bi-{H}amiltonian manifolds”, Proceedings of the VIII International Conference on Waves and Stability in Continuous Media, Part I (Palermo, Italy, 1995), Suppl. Rend. Circ. Mat. Palermo. II. Ser. 45, Circolo Matematico di Palermo, Palermo, 1996, 377–392 | MR | Zbl

[14] G. Falqui, F. Magri, M. Pedroni, J. Nonlinear Math. Phys., 8, suppl. (2001), 118–127 | DOI | MR | Zbl

[15] R. M. Miura, C. S. Gardner, M. D. Kruskal, J. Math. Phys., 9 (1968), 1204–1209 | DOI | MR | Zbl

[16] F. Magri, “A geometrical approach to the nonlinear solvable equations”, Nonlinear Evolution Equations and Dynamical Systems, Proc. Meet. (Univ. Lecce, June 20–23, 1979), Lect. Notes Phys., 120, eds. M. Boiti et al., Springer, Berlin, 1980, 233–263 ; I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, John Wiley Sons Ltd., Chichester, 1993 | DOI | MR | MR

[17] L. A. Dickey, Soliton Equations and Hamiltonian Systems, World Scientific Publishing Co. Inc., River Edge, NJ, 1991 | MR | Zbl

[18] P. Casati, B. Konopelchenko, M. Pedroni, Mat. Contemp., 18 (2000), 59–75 | MR | Zbl