@article{TMF_2002_133_2_a14,
author = {M. Nieszposki},
title = {A~Laplace {Ladder} of {Discrete} {Laplace} {Equations}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {301--310},
year = {2002},
volume = {133},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a14/}
}
M. Nieszposki. A Laplace Ladder of Discrete Laplace Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 301-310. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a14/
[1] H. Jonas, Sitzungsber. Berlin, 14 (1915), 96 | Zbl
[2] L. P. Eisenhart, Transformation of surfaces, Princeton Univ. Press, Princeton, 1923
[3] V. E. Zakharov, S. V. Manakov, Funkts. analiz i ego prilozh., 19:2 (1985), 11 | MR | Zbl
[4] L. V. Bogdanov, B. G. Konopelchenko, J. Phys. A, 28 (1995), L173 ; M. Mañas, A. Doliwa, P. M. Santini, Phys. Lett. A, 232 (1997), 99 | DOI | MR | Zbl | DOI | MR | Zbl
[5] A. Doliwa, P. M. Santini, M. Mañas, J. Math. Phys., 41 (2000), 944 | DOI | MR | Zbl
[6] J. J. C. Nimmo, W. K. Schief, Proc. R Soc. London A, 453 (1997), 255 | DOI | MR | Zbl
[7] J. Cieslinski, A. Doliwa, P. M. Santini, Phys. Lett. A, 235 (1997), 480 ; B. G. Konopelchenko, W. K. Schief, Proc. R Soc. London A, 454 (1998), 3075 ; A. Doliwa, S. V. Manakov, P. M. Santini, Commun. Math. Phys., 196 (1998), 1 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[8] A. Doliwa, P. M. Santini, J. Geom. Phys., 36 (2000), 60 | DOI | MR | Zbl
[9] A. Doliwa, J. Geom. Phys., 30 (1999), 169 | DOI | MR | Zbl
[10] C. Athorne, Inverse Problems, 9 (1993), 217 | DOI | MR | Zbl
[11] E. Goursat, Bull. Soc. Math. France, 28 (1900), 1 ; Е. И. Ганжа, ТМФ, 122:1 (2000), 50 | DOI | MR | Zbl | DOI | MR | Zbl
[12] Th.-F. Moutard, J. Ec. Pol., 45 (1878), 1
[13] A. Doliwa, Phys. Lett. A, 234 (1997), 187 ; В. Э. Адлер, С. Я. Старцев, ТМФ, 121:2 (1999), 271 ; И. А. Дынников, С. П. Новиков, УМН, 52:6 (1997), 157 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[14] M. Nieszporski, A. Doliwa, P. M. Santini, The integrable discretization of the Bianchi-Ernst system, ; A. Doliwa, M. Nieszporski, P. M. Santini, J. Phys. A, 34 (2001), 10423 E-print nlin.SI/0104065 | DOI | MR | Zbl
[15] A. Doliwa, “Lattice geometry of the Hirota equation”, SIDE III-Symmetries and Integrability of Difference Equations, Proc. of 3rd Conf. (Sabandia, Italy, May, 1998), CRM Proc. Lect. Notes, 25, eds. D. Levi et al., Amer. Math. Soc., Providence, RI, 2000, 93 | DOI | MR | Zbl
[16] A. Doliwa, “Geometric discretization of the Koenigs nets”, Geom. Dedicata, Submitted | MR
[17] W. K. Schief, On the unification of classical and novel integrable surfaces. II: Difference geometry, E-print nlin.SI/0104037 | MR
[18] W. K. Schief, Stud. Appl. Math., 106 (2001), 85 | DOI | MR | Zbl
[19] M. Nieszporski, J. Geom. Phys., 40 (2002), 259 | DOI | MR | Zbl