A Laplace Ladder of Discrete Laplace Equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 301-310 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present the notion of a Laplace ladder for a discrete analogue of the Laplace equation. We introduce the adjoint of the discrete Moutard equation and a discrete counterpart of the nonlinear representation for the Goursat equation.
Keywords: Laplace ladder, Toda lattice, discrete KP hierarchies.
@article{TMF_2002_133_2_a14,
     author = {M. Nieszposki},
     title = {A~Laplace {Ladder} of {Discrete} {Laplace} {Equations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {301--310},
     year = {2002},
     volume = {133},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a14/}
}
TY  - JOUR
AU  - M. Nieszposki
TI  - A Laplace Ladder of Discrete Laplace Equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 301
EP  - 310
VL  - 133
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a14/
LA  - ru
ID  - TMF_2002_133_2_a14
ER  - 
%0 Journal Article
%A M. Nieszposki
%T A Laplace Ladder of Discrete Laplace Equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 301-310
%V 133
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a14/
%G ru
%F TMF_2002_133_2_a14
M. Nieszposki. A Laplace Ladder of Discrete Laplace Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 301-310. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a14/

[1] H. Jonas, Sitzungsber. Berlin, 14 (1915), 96 | Zbl

[2] L. P. Eisenhart, Transformation of surfaces, Princeton Univ. Press, Princeton, 1923

[3] V. E. Zakharov, S. V. Manakov, Funkts. analiz i ego prilozh., 19:2 (1985), 11 | MR | Zbl

[4] L. V. Bogdanov, B. G. Konopelchenko, J. Phys. A, 28 (1995), L173 ; M. Mañas, A. Doliwa, P. M. Santini, Phys. Lett. A, 232 (1997), 99 | DOI | MR | Zbl | DOI | MR | Zbl

[5] A. Doliwa, P. M. Santini, M. Mañas, J. Math. Phys., 41 (2000), 944 | DOI | MR | Zbl

[6] J. J. C. Nimmo, W. K. Schief, Proc. R Soc. London A, 453 (1997), 255 | DOI | MR | Zbl

[7] J. Cieslinski, A. Doliwa, P. M. Santini, Phys. Lett. A, 235 (1997), 480 ; B. G. Konopelchenko, W. K. Schief, Proc. R Soc. London A, 454 (1998), 3075 ; A. Doliwa, S. V. Manakov, P. M. Santini, Commun. Math. Phys., 196 (1998), 1 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[8] A. Doliwa, P. M. Santini, J. Geom. Phys., 36 (2000), 60 | DOI | MR | Zbl

[9] A. Doliwa, J. Geom. Phys., 30 (1999), 169 | DOI | MR | Zbl

[10] C. Athorne, Inverse Problems, 9 (1993), 217 | DOI | MR | Zbl

[11] E. Goursat, Bull. Soc. Math. France, 28 (1900), 1 ; Е. И. Ганжа, ТМФ, 122:1 (2000), 50 | DOI | MR | Zbl | DOI | MR | Zbl

[12] Th.-F. Moutard, J. Ec. Pol., 45 (1878), 1

[13] A. Doliwa, Phys. Lett. A, 234 (1997), 187 ; В. Э. Адлер, С. Я. Старцев, ТМФ, 121:2 (1999), 271 ; И. А. Дынников, С. П. Новиков, УМН, 52:6 (1997), 157 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[14] M. Nieszporski, A. Doliwa, P. M. Santini, The integrable discretization of the Bianchi-Ernst system, ; A. Doliwa, M. Nieszporski, P. M. Santini, J. Phys. A, 34 (2001), 10423 E-print nlin.SI/0104065 | DOI | MR | Zbl

[15] A. Doliwa, “Lattice geometry of the Hirota equation”, SIDE III-Symmetries and Integrability of Difference Equations, Proc. of 3rd Conf. (Sabandia, Italy, May, 1998), CRM Proc. Lect. Notes, 25, eds. D. Levi et al., Amer. Math. Soc., Providence, RI, 2000, 93 | DOI | MR | Zbl

[16] A. Doliwa, “Geometric discretization of the Koenigs nets”, Geom. Dedicata, Submitted | MR

[17] W. K. Schief, On the unification of classical and novel integrable surfaces. II: Difference geometry, E-print nlin.SI/0104037 | MR

[18] W. K. Schief, Stud. Appl. Math., 106 (2001), 85 | DOI | MR | Zbl

[19] M. Nieszporski, J. Geom. Phys., 40 (2002), 259 | DOI | MR | Zbl