Prolongations of Vector Fields and the Invariants-by-Derivation Property
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 289-300
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For any given vector field $X$ defined on some open set $M\subset \mathbb R^2$, we characterize the prolongations $X^*_n$ of $X$ to the nth jet space $M^{(n)}$, $n\geq 1$, such that a complete system of invariants for $X^*_n$ can be obtained by derivation of lower-order invariants. This leads to characterizations of $C^{\infty }$-symmetries and to new procedures for reducing the order of an ordinary differential equation.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
$C^{\infty }$-symmetry, differential invariants, reductions of ordinary differential equations.
                    
                  
                
                
                @article{TMF_2002_133_2_a13,
     author = {C. Muriel and J. L. Romero},
     title = {Prolongations of {Vector} {Fields} and the {Invariants-by-Derivation} {Property}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {289--300},
     publisher = {mathdoc},
     volume = {133},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a13/}
}
                      
                      
                    TY - JOUR AU - C. Muriel AU - J. L. Romero TI - Prolongations of Vector Fields and the Invariants-by-Derivation Property JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2002 SP - 289 EP - 300 VL - 133 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a13/ LA - ru ID - TMF_2002_133_2_a13 ER -
C. Muriel; J. L. Romero. Prolongations of Vector Fields and the Invariants-by-Derivation Property. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 289-300. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a13/