Prolongations of Vector Fields and the Invariants-by-Derivation Property
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 289-300

Voir la notice de l'article provenant de la source Math-Net.Ru

For any given vector field $X$ defined on some open set $M\subset \mathbb R^2$, we characterize the prolongations $X^*_n$ of $X$ to the nth jet space $M^{(n)}$, $n\geq 1$, such that a complete system of invariants for $X^*_n$ can be obtained by derivation of lower-order invariants. This leads to characterizations of $C^{\infty }$-symmetries and to new procedures for reducing the order of an ordinary differential equation.
Keywords: $C^{\infty }$-symmetry, differential invariants, reductions of ordinary differential equations.
@article{TMF_2002_133_2_a13,
     author = {C. Muriel and J. L. Romero},
     title = {Prolongations of {Vector} {Fields} and the {Invariants-by-Derivation} {Property}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {289--300},
     publisher = {mathdoc},
     volume = {133},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a13/}
}
TY  - JOUR
AU  - C. Muriel
AU  - J. L. Romero
TI  - Prolongations of Vector Fields and the Invariants-by-Derivation Property
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 289
EP  - 300
VL  - 133
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a13/
LA  - ru
ID  - TMF_2002_133_2_a13
ER  - 
%0 Journal Article
%A C. Muriel
%A J. L. Romero
%T Prolongations of Vector Fields and the Invariants-by-Derivation Property
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 289-300
%V 133
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a13/
%G ru
%F TMF_2002_133_2_a13
C. Muriel; J. L. Romero. Prolongations of Vector Fields and the Invariants-by-Derivation Property. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 289-300. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a13/