Prolongations of Vector Fields and the Invariants-by-Derivation Property
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 289-300
Cet article a éte moissonné depuis la source Math-Net.Ru
For any given vector field $X$ defined on some open set $M\subset \mathbb R^2$, we characterize the prolongations $X^*_n$ of $X$ to the nth jet space $M^{(n)}$, $n\geq 1$, such that a complete system of invariants for $X^*_n$ can be obtained by derivation of lower-order invariants. This leads to characterizations of $C^{\infty }$-symmetries and to new procedures for reducing the order of an ordinary differential equation.
Keywords:
$C^{\infty }$-symmetry, differential invariants, reductions of ordinary differential equations.
@article{TMF_2002_133_2_a13,
author = {C. Muriel and J. L. Romero},
title = {Prolongations of {Vector} {Fields} and the {Invariants-by-Derivation} {Property}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {289--300},
year = {2002},
volume = {133},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a13/}
}
TY - JOUR AU - C. Muriel AU - J. L. Romero TI - Prolongations of Vector Fields and the Invariants-by-Derivation Property JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2002 SP - 289 EP - 300 VL - 133 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a13/ LA - ru ID - TMF_2002_133_2_a13 ER -
C. Muriel; J. L. Romero. Prolongations of Vector Fields and the Invariants-by-Derivation Property. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 289-300. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a13/
[1] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 ; Л. В. Овсянников, Групповой анализ дифференциальных уравнений, Наука, М., 1978 ; H. Stephani, Differential Equations, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl | MR | MR | Zbl
[2] B. Abraham-Shrauner, K. S. Govinder, P. G. L. Leach, Phys. Lett. A, 203 (1995), 169–174 ; A. González-López, Phys. Lett. A, 133 (1988), 190–194 | DOI | MR | Zbl | DOI | MR
[3] C. Muriel, J. L. Romero, IMA J. Appl. Math., 66 (2001), 111–125 | DOI | MR | Zbl