@article{TMF_2002_133_2_a12,
author = {O. I. Mokhov},
title = {Compatible {Dubrovin{\textendash}Novikov} {Hamiltonian} {Operators,} {Lie} {Derivative,} and {Integrable} {Systems} of {Hydrodynamic} {Type}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {279--288},
year = {2002},
volume = {133},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a12/}
}
TY - JOUR AU - O. I. Mokhov TI - Compatible Dubrovin–Novikov Hamiltonian Operators, Lie Derivative, and Integrable Systems of Hydrodynamic Type JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2002 SP - 279 EP - 288 VL - 133 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a12/ LA - ru ID - TMF_2002_133_2_a12 ER -
%0 Journal Article %A O. I. Mokhov %T Compatible Dubrovin–Novikov Hamiltonian Operators, Lie Derivative, and Integrable Systems of Hydrodynamic Type %J Teoretičeskaâ i matematičeskaâ fizika %D 2002 %P 279-288 %V 133 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a12/ %G ru %F TMF_2002_133_2_a12
O. I. Mokhov. Compatible Dubrovin–Novikov Hamiltonian Operators, Lie Derivative, and Integrable Systems of Hydrodynamic Type. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 279-288. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a12/
[1] B. A. Dubrovin, S. P. Novikov, DAN SSSR, 270:4 (1983), 781–785 | MR | Zbl
[2] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, Chichester, 1993 | MR
[3] F. Magri, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl
[4] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups, Lect. Notes Math., 1620, eds. M. Francaviglia et al., Springer, Berlin, 1996, 120–348 ; E-print hep-th/9407018 | DOI | MR | Zbl
[5] B. Dubrovin, Differential geometry of the space of orbits of a Coxeter group, Preprint SISSA-29/93/FM, SISSA, Trieste, 1993 ; E-print hep-th/9303152 | MR
[6] B. Dubrovin, Flat pencils of metrics and Frobenius manifolds, Preprint SISSA 25/98/FM, SISSA, Trieste, 1998 ; E-print math.DG/9803106 | MR
[7] A. P. Fordy, O. I. Mokhov, Physica D, 152–153:1–4 (2001), 475–490 | DOI | MR | Zbl
[8] O. I. Mokhov, Funkts. analiz i ego prilozh., 35:2 (2001), 24–36 ; E-print math.DG/0005051 | DOI | MR | Zbl
[9] O. I. Mokhov, UMN, 52:6 (1997), 171–172 | DOI | MR
[10] O. I. Mokhov, TMF, 130:2 (2002), 233–250 ; ; УМН, 56:2 (2001), 221–222 E-print math.DG/0005081 | DOI | MR | Zbl | DOI | MR | Zbl
[11] E. V. Ferapontov, Compatible Poisson brackets of hydrodynamic type, E-print math.DG/0005221 | MR
[12] O. I. Mokhov, Tr. MI RAN, 225, 1999, 284–300 | MR | Zbl
[13] O. I. Mokhov, Rep. Math. Phys., 43:1/2 (1999), 247–256 | DOI | MR | Zbl
[14] O. I. Mokhov, UMN, 53:2 (1998), 153–154 | DOI | MR | Zbl
[15] I. M. Gelfand, I. Ya. Dorfman, Funkts. analiz i ego prilozh., 13:4 (1979), 13–30 ; B. Fuchssteiner, “Application of hereditary symmetries to nonlinear evolution equations.”, Nonlinear Anal., 3 (1979), 849–862 ; A. S. Fokas, B. Fuchssteiner, Lett. Nuovo Cimento, 28:8 (1980), 299–303 ; П. Олвер, Приложения групп Ли к дифференциальным уравнениям, Мир, М., 1989 ; О. И. Мохов, УМН, 53:3 (1998), 85–192 | MR | Zbl | DOI | MR | Zbl | DOI | MR | MR | Zbl | DOI | MR | Zbl
[16] O. I. Mokhov, E. V. Ferapontov, UMN, 45:3 (1990), 191–192 ; Е. В. Ферапонтов, Функц. анализ и его прилож., 25:3 (1991), 37–49 ; “Гамильтоновые системы гидродинамического типа и их реализация на гиперповерхностях псевдоевклидова пространства”, Итоги науки и техники. Проблемы геометрии, 22, ред. Н. М. Остиану, ВИНИТИ, М., 1990, 59–96 ; О. И. Мохов, Е. В. Ферапонтов, Функц. анализ и его прилож., 28:2 (1994), 60–63 ; O. I. Mokhov, Phys. Lett. A, 166:3–4 (1992), 215–216 ; E. V. Ferapontov, “Nonlocal Hamiltonian operators of hydrodynamic type: differential geometry and applications”, Topics in Topology and Mathematical Physics, ed. S. P. Novikov, Amer. Math. Soc., Providence, RI, 1995, 33–58 | MR | Zbl | MR | Zbl | MR | MR | Zbl | DOI | MR | MR