Compatible Dubrovin–Novikov Hamiltonian Operators, Lie Derivative, and Integrable Systems of Hydrodynamic Type
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 279-288 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that two Dubrovin–Novikov Hamiltonian operators are compatible if and only if one of these operators is the Lie derivative of the other operator along a certain vector field. We consider the class of flat manifolds, which correspond to arbitrary pairs of compatible Dubrovin–Novikov Hamiltonian operators. Locally, these manifolds are defined by solutions of a system of nonlinear equations, which is integrable by the method of the inverse scattering problem. We construct the integrable hierarchies generated by arbitrary pairs of compatible Dubrovin–Novikov Hamiltonian operators.
Keywords: compatible Hamiltonian operators - systems of hydrodynamic type - Lie derivative, integrable hierarchies, local Poisson brackets of hydrodynamic type, flat pencils of metrics.
@article{TMF_2002_133_2_a12,
     author = {O. I. Mokhov},
     title = {Compatible {Dubrovin{\textendash}Novikov} {Hamiltonian} {Operators,} {Lie} {Derivative,} and {Integrable} {Systems} of {Hydrodynamic} {Type}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {279--288},
     year = {2002},
     volume = {133},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a12/}
}
TY  - JOUR
AU  - O. I. Mokhov
TI  - Compatible Dubrovin–Novikov Hamiltonian Operators, Lie Derivative, and Integrable Systems of Hydrodynamic Type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 279
EP  - 288
VL  - 133
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a12/
LA  - ru
ID  - TMF_2002_133_2_a12
ER  - 
%0 Journal Article
%A O. I. Mokhov
%T Compatible Dubrovin–Novikov Hamiltonian Operators, Lie Derivative, and Integrable Systems of Hydrodynamic Type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 279-288
%V 133
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a12/
%G ru
%F TMF_2002_133_2_a12
O. I. Mokhov. Compatible Dubrovin–Novikov Hamiltonian Operators, Lie Derivative, and Integrable Systems of Hydrodynamic Type. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 279-288. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a12/

[1] B. A. Dubrovin, S. P. Novikov, DAN SSSR, 270:4 (1983), 781–785 | MR | Zbl

[2] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, Chichester, 1993 | MR

[3] F. Magri, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl

[4] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups, Lect. Notes Math., 1620, eds. M. Francaviglia et al., Springer, Berlin, 1996, 120–348 ; E-print hep-th/9407018 | DOI | MR | Zbl

[5] B. Dubrovin, Differential geometry of the space of orbits of a Coxeter group, Preprint SISSA-29/93/FM, SISSA, Trieste, 1993 ; E-print hep-th/9303152 | MR

[6] B. Dubrovin, Flat pencils of metrics and Frobenius manifolds, Preprint SISSA 25/98/FM, SISSA, Trieste, 1998 ; E-print math.DG/9803106 | MR

[7] A. P. Fordy, O. I. Mokhov, Physica D, 152–153:1–4 (2001), 475–490 | DOI | MR | Zbl

[8] O. I. Mokhov, Funkts. analiz i ego prilozh., 35:2 (2001), 24–36 ; E-print math.DG/0005051 | DOI | MR | Zbl

[9] O. I. Mokhov, UMN, 52:6 (1997), 171–172 | DOI | MR

[10] O. I. Mokhov, TMF, 130:2 (2002), 233–250 ; ; УМН, 56:2 (2001), 221–222 E-print math.DG/0005081 | DOI | MR | Zbl | DOI | MR | Zbl

[11] E. V. Ferapontov, Compatible Poisson brackets of hydrodynamic type, E-print math.DG/0005221 | MR

[12] O. I. Mokhov, Tr. MI RAN, 225, 1999, 284–300 | MR | Zbl

[13] O. I. Mokhov, Rep. Math. Phys., 43:1/2 (1999), 247–256 | DOI | MR | Zbl

[14] O. I. Mokhov, UMN, 53:2 (1998), 153–154 | DOI | MR | Zbl

[15] I. M. Gelfand, I. Ya. Dorfman, Funkts. analiz i ego prilozh., 13:4 (1979), 13–30 ; B. Fuchssteiner, “Application of hereditary symmetries to nonlinear evolution equations.”, Nonlinear Anal., 3 (1979), 849–862 ; A. S. Fokas, B. Fuchssteiner, Lett. Nuovo Cimento, 28:8 (1980), 299–303 ; П. Олвер, Приложения групп Ли к дифференциальным уравнениям, Мир, М., 1989 ; О. И. Мохов, УМН, 53:3 (1998), 85–192 | MR | Zbl | DOI | MR | Zbl | DOI | MR | MR | Zbl | DOI | MR | Zbl

[16] O. I. Mokhov, E. V. Ferapontov, UMN, 45:3 (1990), 191–192 ; Е. В. Ферапонтов, Функц. анализ и его прилож., 25:3 (1991), 37–49 ; “Гамильтоновые системы гидродинамического типа и их реализация на гиперповерхностях псевдоевклидова пространства”, Итоги науки и техники. Проблемы геометрии, 22, ред. Н. М. Остиану, ВИНИТИ, М., 1990, 59–96 ; О. И. Мохов, Е. В. Ферапонтов, Функц. анализ и его прилож., 28:2 (1994), 60–63 ; O. I. Mokhov, Phys. Lett. A, 166:3–4 (1992), 215–216 ; E. V. Ferapontov, “Nonlocal Hamiltonian operators of hydrodynamic type: differential geometry and applications”, Topics in Topology and Mathematical Physics, ed. S. P. Novikov, Amer. Math. Soc., Providence, RI, 1995, 33–58 | MR | Zbl | MR | Zbl | MR | MR | Zbl | DOI | MR | MR