Bilinear Representations of Integrable Equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 270-278 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a method for deriving recursion operators and canonical Lax pairs directly from bilinear identities of the KP type. Examples include the KdV equation, the Boussinesq equation, and a real equivalent of the nonlinear Schrödinger equation.
Mots-clés : soliton
Keywords: symmetry, integrability, differential equation.
@article{TMF_2002_133_2_a11,
     author = {I. Loris},
     title = {Bilinear {Representations} of {Integrable} {Equations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {270--278},
     year = {2002},
     volume = {133},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a11/}
}
TY  - JOUR
AU  - I. Loris
TI  - Bilinear Representations of Integrable Equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 270
EP  - 278
VL  - 133
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a11/
LA  - ru
ID  - TMF_2002_133_2_a11
ER  - 
%0 Journal Article
%A I. Loris
%T Bilinear Representations of Integrable Equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 270-278
%V 133
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a11/
%G ru
%F TMF_2002_133_2_a11
I. Loris. Bilinear Representations of Integrable Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 270-278. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a11/

[1] D. J. Korteweg, G. de Vries, Philos. Mag. Ser. 5, 39 (1895), 422–443 | DOI | MR

[2] J. Boussinesq, C. R. Acad. Sci. Paris, 72 (1871), 755–759

[3] M. Remoissenet, Waves Called Solitons: Concepts and Experiments, Springer, Berlin, 1994 | MR | Zbl

[4] P. Olver, Prilozhenie grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[5] R. Khirota, “Pryamye metody v teorii solitonov”, Solitony, eds. R. Bullaf, F. Kodri, Mir, M., 1983, 175–192 | MR

[6] B. B. Kadomtsev, V. I. Petviashvili, DAN SSSR, 192 (1970), 753–756 | Zbl

[7] R. Willox, On a direct bilinear operator method in soliton theory, Ph. D. thesis, Vrije Universiteit Brussel, Brussels, Belgium, 1993

[8] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Proceedings of RIMS symposium on non-linear integrable systems-Classical theory and quantum theory, eds. M. Jimbo, T. Miwa, World Scientific, Singapore, 1983, 39–119 | MR

[9] A. S. Fokas, P. M. Santini, Commun. Math. Phys., 116 (1988), 449–474 | DOI | MR | Zbl

[10] B. Fuchssteiner, Nonlinear Anal. Theor. Meth. Appl., 6 (1979), 849–862 | DOI | MR

[11] F. Lambert, I. Loris, J. Springael, R. Willox, J. Phys. A, 27 (1994), 5325–5334 ; I. Loris, R. Willox, Inverse Problems, 13 (1997), 411–420 ; I. Loris, R. Willox, J. Phys. A, 30 (1997), 6925–6938 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[12] I. Loris, Symmetry reductions in the tau-function approach to integrability, Ph. D. thesis, Vrije Universiteit Brussel, Brussels, Belgium, 1998 | Zbl