Inverse Spectral Transform for the $q$-Deformed Volterra Equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 259-269
Cet article a éte moissonné depuis la source Math-Net.Ru
We use the inverse spectral transform to study a $q$-deformation of the Volterra equation. The $q$-deformed time dependence of the spectral data is computed, and the one-soliton solution is explicitly constructed.
Mots-clés :
$q$-equations, $q$-deformations.
@article{TMF_2002_133_2_a10,
author = {S. Lombardo},
title = {Inverse {Spectral} {Transform} for the $q${-Deformed} {Volterra} {Equation}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {259--269},
year = {2002},
volume = {133},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a10/}
}
S. Lombardo. Inverse Spectral Transform for the $q$-Deformed Volterra Equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 259-269. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a10/
[1] V. Volterra, Leco̧n sur la théorie mathématique de la lutte pour la vie, Gautier-Villars, Paris, 1931 | MR
[2] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR
[3] L. D. Faddeev, L. A. Takhtajan, “Liouville model on the lattice”, Field Theory, Quantum Gravity and Strings, Lect. Notes Phys., 246, eds. J. de Vega, N. Sánchez, Springer, Berlin, 1986, 66 | MR
[4] A. Yu. Volkov, Phys. Lett. A, 167 (1992), 345–355 ; А. В. Антонов, ТМФ, 113:3 (1997), 384–396 ; E-print hep-th/9607031 | DOI | MR | DOI | MR | Zbl
[5] F. W. Nijhoff, Lett. Math. Phys., 30 (1994), 327–336 | DOI | MR | Zbl
[6] T. H. Koornwinder, $q$-Special function, a tutorial, E-print math.CA/9403216