Solvable Three-Body Problem and Painlev\'e Conjectures
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 149-159

Voir la notice de l'article provenant de la source Math-Net.Ru

For a special choice of the three interparticle coupling constants in the three-body version of a many-body problem in the plane that was recently investigated, the general solution of the equations of motion can be written in closed form (and is remarkably simple). We also discuss another analogous three-body problem and obtain two third-order highly nonlinear autonomous ODEs whose general solutions, we conjecture, are entire. In other words, we conjecture that these ODEs feature (a strong version of) the Painlevé property.
Keywords: three-body problem, linear ordinary differential equations, Painlevé property.
@article{TMF_2002_133_2_a1,
     author = {F. Calogero},
     title = {Solvable {Three-Body} {Problem} and {Painlev\'e} {Conjectures}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {149--159},
     publisher = {mathdoc},
     volume = {133},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a1/}
}
TY  - JOUR
AU  - F. Calogero
TI  - Solvable Three-Body Problem and Painlev\'e Conjectures
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 149
EP  - 159
VL  - 133
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a1/
LA  - ru
ID  - TMF_2002_133_2_a1
ER  - 
%0 Journal Article
%A F. Calogero
%T Solvable Three-Body Problem and Painlev\'e Conjectures
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 149-159
%V 133
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a1/
%G ru
%F TMF_2002_133_2_a1
F. Calogero. Solvable Three-Body Problem and Painlev\'e Conjectures. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 149-159. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a1/