Solvable Three-Body Problem and Painlevé Conjectures
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 149-159 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a special choice of the three interparticle coupling constants in the three-body version of a many-body problem in the plane that was recently investigated, the general solution of the equations of motion can be written in closed form (and is remarkably simple). We also discuss another analogous three-body problem and obtain two third-order highly nonlinear autonomous ODEs whose general solutions, we conjecture, are entire. In other words, we conjecture that these ODEs feature (a strong version of) the Painlevé property.
Keywords: three-body problem, linear ordinary differential equations
Mots-clés : Painlevé property.
@article{TMF_2002_133_2_a1,
     author = {F. Calogero},
     title = {Solvable {Three-Body} {Problem} and {Painlev\'e} {Conjectures}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {149--159},
     year = {2002},
     volume = {133},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a1/}
}
TY  - JOUR
AU  - F. Calogero
TI  - Solvable Three-Body Problem and Painlevé Conjectures
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 149
EP  - 159
VL  - 133
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a1/
LA  - ru
ID  - TMF_2002_133_2_a1
ER  - 
%0 Journal Article
%A F. Calogero
%T Solvable Three-Body Problem and Painlevé Conjectures
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 149-159
%V 133
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a1/
%G ru
%F TMF_2002_133_2_a1
F. Calogero. Solvable Three-Body Problem and Painlevé Conjectures. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 149-159. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a1/

[1] F. Calogero, J.-P. Françoise, Inverse Problems, 17 (2001), 1–8 | DOI | MR

[2] F. Calogero, Classical Many-Body Problems Amenable to Exact Treatments, Lect. Notes in Phys. Monograph., 66, Springer, Berlin, 2001 | DOI | MR

[3] F. Calogero, J.-P. Françoise, M. Sommacal, “Periodic solutions of a many-rotator problem in the plane. II: Analysis of various motions”, J. Nonlinear Math. Phys. (to appear) | Zbl

[4] F. Calogero, Nuovo Cimento B, 43 (1978), 177–241 ; Physica D, 152–153 (2001), 78–84 | DOI | MR | DOI | MR | Zbl

[5] F. Calogero, J. Math. Phys., 39 (1998), 5268–5291 | DOI | MR | Zbl

[6] F. Calogero, J. Math. Phys., 38 (1997), 5711–5719 | DOI | MR | Zbl

[7] F. Calogero, “Solution of a three-body problem in the plane.”, Phys. Lett. A, submitted | MR | Zbl