Mots-clés : Painlevé property.
@article{TMF_2002_133_2_a1,
author = {F. Calogero},
title = {Solvable {Three-Body} {Problem} and {Painlev\'e} {Conjectures}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {149--159},
year = {2002},
volume = {133},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a1/}
}
F. Calogero. Solvable Three-Body Problem and Painlevé Conjectures. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 149-159. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a1/
[1] F. Calogero, J.-P. Françoise, Inverse Problems, 17 (2001), 1–8 | DOI | MR
[2] F. Calogero, Classical Many-Body Problems Amenable to Exact Treatments, Lect. Notes in Phys. Monograph., 66, Springer, Berlin, 2001 | DOI | MR
[3] F. Calogero, J.-P. Françoise, M. Sommacal, “Periodic solutions of a many-rotator problem in the plane. II: Analysis of various motions”, J. Nonlinear Math. Phys. (to appear) | Zbl
[4] F. Calogero, Nuovo Cimento B, 43 (1978), 177–241 ; Physica D, 152–153 (2001), 78–84 | DOI | MR | DOI | MR | Zbl
[5] F. Calogero, J. Math. Phys., 39 (1998), 5268–5291 | DOI | MR | Zbl
[6] F. Calogero, J. Math. Phys., 38 (1997), 5711–5719 | DOI | MR | Zbl
[7] F. Calogero, “Solution of a three-body problem in the plane.”, Phys. Lett. A, submitted | MR | Zbl