Solvable Three-Body Problem and Painlev\'e Conjectures
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 149-159
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For a special choice of the three interparticle coupling constants in the three-body version of a many-body problem in the plane that was recently investigated, the general solution of the equations of motion can be written in closed form (and is remarkably simple). We also discuss another analogous three-body problem and obtain two third-order highly nonlinear autonomous ODEs whose general solutions, we conjecture, are entire. In other words, we conjecture that these ODEs feature (a strong version of) the Painlevé property.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
three-body problem, linear ordinary differential equations, Painlevé property.
                    
                  
                
                
                @article{TMF_2002_133_2_a1,
     author = {F. Calogero},
     title = {Solvable {Three-Body} {Problem} and {Painlev\'e} {Conjectures}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {149--159},
     publisher = {mathdoc},
     volume = {133},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a1/}
}
                      
                      
                    F. Calogero. Solvable Three-Body Problem and Painlev\'e Conjectures. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 149-159. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a1/
