Thermodynamics and Hydrodynamics (Statistical Foundations): 1. The Problem Setup
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 1, pp. 121-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Analyzing the physical foundations of statistical mechanics, we show that it can only be local. This means that the structure of matter and all its macroscopic parameters (except the density $\rho$, the velocity $\theta$) of the liquid, and the temperature $\theta$) must be determined by what occurs inside a correlation sphere of the radius $R\approx 10^{-7}\,$cm the values of $\rho $, $\vec v$ and $\theta$, which play the role of fixed parameters for the BBGKY hierarchy, must be found by solving hydrodynamic equations with macroscopic boundary and initial conditions taken into account.
Keywords: BBGKY hierarchy, thermodynamic limit, correlation sphere, local approach.
@article{TMF_2002_133_1_a7,
     author = {G. A. Martynov},
     title = {Thermodynamics and {Hydrodynamics} {(Statistical} {Foundations):} {1.~The} {Problem} {Setup}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {121--131},
     year = {2002},
     volume = {133},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a7/}
}
TY  - JOUR
AU  - G. A. Martynov
TI  - Thermodynamics and Hydrodynamics (Statistical Foundations): 1. The Problem Setup
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 121
EP  - 131
VL  - 133
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a7/
LA  - ru
ID  - TMF_2002_133_1_a7
ER  - 
%0 Journal Article
%A G. A. Martynov
%T Thermodynamics and Hydrodynamics (Statistical Foundations): 1. The Problem Setup
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 121-131
%V 133
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a7/
%G ru
%F TMF_2002_133_1_a7
G. A. Martynov. Thermodynamics and Hydrodynamics (Statistical Foundations): 1. The Problem Setup. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 1, pp. 121-131. http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a7/

[1] D. Chowdhury, D. Staufer, Principles of Equilibrium Statistical Mechanics, Wiley-VCH, Weinheim, 2000 | MR | Zbl

[2] J. Walecka, Fundamentals of Statistical Mechanics, World Scientific, London, 2000 | MR | Zbl

[3] J. Keizer, Statistical Thermodynamics of Nonequilibrium Processes, Springer, New York–Heidelberg–London–Paris–Tokyo, 1987 | MR

[4] T. Guenault, Statistical Physics, Chapman Hall, London, 1995

[5] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike. Izbrannye trudy, Naukova dumka, Kiev, 1970 | MR

[6] G. E. Norman, V. V. Stegailov, ZhETF, 119:5 (2001), 1011

[7] K. Khuang, Statisticheskaya mekhanika, Mir, M., 1966

[8] G. A. Martynov, UFN, 166:10 (1996), 1105 | DOI

[9] Dzh. V. Gibbs, Osnovnye printsipy statisticheskoi mekhaniki, OGIZ, M., 1946