Quantum Macroscopic Effects in a Degenerate Strongly Magnetized Nucleon Gas
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 1, pp. 103-120
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model of a degenerate gas consisting of neutrons that are in chemical equilibrium with degenerate protons and electrons in a stationary and homogeneous superstrong magnetic field is used to describe the state of the matter in central regions of strongly magnetized neutron stars. Expressions for thermodynamic quantities (such as energy density, particle density, pressure, and magnetization) characterizing a degenerate gas of neutrons, protons, and electrons are obtained. In these expressions, the contributions determined by the interaction between anomalous magnetic moments of fermions and the magnetic field are taken into account. Macroscopic effects that may occur in strongly magnetized neutron stars are discussed. We show that all thermodynamic quantities characterizing electrically charged fermions in a strong magnetic field are subject to nonperiodic oscillations caused by the interaction of the anomalous magnetic moments of protons and electrons with the magnetic field. We also show that if the nucleon density and the electron density exceed threshold values that are relatively small and depend on the magnetic field strength, all fermions are fully polarized with respect to the spin. The full spin polarization effect in neutrons is caused by the interaction between the anomalous magnetic moment and the magnetic field. The obtained results may prove useful in understanding processes that occur in the nucleus of a neutron star with a magnetic field “frozen into” the star.
Keywords: Fermi energy, anomalous magnetic moment, thermodynamic quantities, full spin polarization, magnetic oscillations.
@article{TMF_2002_133_1_a6,
     author = {V. R. Khalilov},
     title = {Quantum {Macroscopic} {Effects} in {a~Degenerate} {Strongly} {Magnetized} {Nucleon} {Gas}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {103--120},
     year = {2002},
     volume = {133},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a6/}
}
TY  - JOUR
AU  - V. R. Khalilov
TI  - Quantum Macroscopic Effects in a Degenerate Strongly Magnetized Nucleon Gas
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 103
EP  - 120
VL  - 133
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a6/
LA  - ru
ID  - TMF_2002_133_1_a6
ER  - 
%0 Journal Article
%A V. R. Khalilov
%T Quantum Macroscopic Effects in a Degenerate Strongly Magnetized Nucleon Gas
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 103-120
%V 133
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a6/
%G ru
%F TMF_2002_133_1_a6
V. R. Khalilov. Quantum Macroscopic Effects in a Degenerate Strongly Magnetized Nucleon Gas. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 1, pp. 103-120. http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a6/

[1] B. Paczynski, Acta Astron., 42 (1992), 145 ; C. Thompson, R. C. Duncan, Astrophys. J., 473 (1996), 322 | DOI

[2] R. C. Duncan, Physics in ultra-strong magnetic fields, E-print astro-ph/0002442

[3] C. Kouveliotou et al., Nature, 393 (1998), 235 | DOI

[4] K. Hurley et al., Nature, 397 (1999), 41 | DOI | MR

[5] S. Shapiro, S. Tyukolski, Chernye dyry, belye karliki i neitronnye zvezdy, Mir, M., 1985

[6] S. Glosh et al., Electrical conductivity at the core of a magnetar, E-print astro-ph/0106153

[7] D. Lai, S. Shapiro, Astrophys. J., 383 (1991), 745 | DOI

[8] R. Kippenhahn, A. Weigert, Stellar Structure and Evolution, Springer, Berlin, 1994

[9] S. Veinberg, Gravitatsiya i kosmologiya, Mir, M., 1975

[10] J. M. Lattimer et al., Phys. Rev. Lett., 66 (1991), 2701 | DOI

[11] G. S. Bisnovatyi-Kogan, Astron. Astrophys. Trans., 3 (1993), 287 | DOI

[12] V. Canuto, H.-Y. Chiu, Phys. Rev., 173 (1968), 1210 ; 1220; 1229 | DOI

[13] C.-L. Ho, V. R. Khalilov, C. Yang, Mod. Phys. Lett. B, 10 (1996), 1141 | DOI

[14] S. Chakrabarty, D. Bandopadhyay, S. Pal, Phys. Rev. Lett., 78 (1997), 2898 | DOI

[15] D. Bandopadhyay, S. Chakrabarty, S. Pal, Phys. Rev. Lett., 79 (1997), 2176 | DOI

[16] A. Broderick, M. Prakash, J. M. Lattimer, Astrophys. J., 537 (2000), 351 | DOI

[17] In Saeng Suh, G. J. Mathews, Cold ideal equation of state for strongly magnetized neutron-star matter, E-print astro-ph/9912301

[18] M. Chaichian, S. Masood, C. Montonen, A. Pérez Martínez, H. Pérez Rojas, Phys. Rev. Lett., 84 (2000), 5261 ; A. P. Martínez, H. P. Rojas, H. J. M. Cuesta, Magnetic collapse of a neutron gas: no magnetar formation, E-print hep-ph/0011399 | DOI

[19] V. R. Khalilov, TMF, 130:1 (2002), 87 | DOI | Zbl

[20] W. J. de Haas, P. M. van Alphen, Proc. Amsterdam Acad., 33 (1936), 1106; Л. Д. Ландау, Собрание трудов, Т. 1, Наука, М., 1969 | MR

[21] L. D. Landau, E. M. Lifshits, Statisticheskaya fizika, Chast 1, Nauka, M., 1976 | MR

[22] E. M. Lifshits, Izbrannye trudy, Nauka, M., 1994 | MR

[23] V. Ch. Zhukovskii, A. S. Vshivtsev, P. A. Eminov, YaF, 58 (1995), 1274

[24] A. S. Vshivtsev, K. G. Klimenko, B. V. Magnitskii, ZhETF, 107 (1995), 307

[25] A. D. Balaev i dr., ZhETF, 113 (1998), 1877

[26] D. Ebert et al., Phys. Rev. D, 61 (2000), 025005 | DOI

[27] I. M. Ternov, V. G. Bagrov, V. Ch. Zhukovskii, Vestn. Mosk. un-ta. Ser. fiz., astr., 1966, no. 4, 21

[28] J. Schwinger, Phys. Rev., 73 (1948), 416L ; Proc. Nat. Acad. Sci. USA, 37 (1951), 152; 455 | DOI | MR | MR | Zbl

[29] I. M. Ternov et al., J. Phys. A, 11 (1978), 739 ; V. R. Khalilov, Electrons in Strong Electromagnetic Fields, Gordon and Breach, Amsterdam, 1996 | DOI

[30] E. M. Lifshits, L. P. Pitaevskii, Statisticheskaya fizika. Teoriya kondensirovannogo sostoyaniya, Chast 2, Nauka, M., 1978 | MR

[31] V. R. Khalilov, Phys. Rev. D, 65 (2002), 056001 | DOI

[32] Ch. Kittel, Vvedenie v fiziku tverdogo tela, Nauka, M., 1978

[33] V. R. Khalilov, TMF, 126 (2001), 427 | DOI | Zbl