Keywords: stability, infinite-dimensional system of equations, hyperbolic point, separatrix.
@article{TMF_2002_133_1_a2,
author = {L. D. Pustyl'nikov},
title = {Space-Time {Chaos,} {Critical} {Phenomena,} and {Bifurcations} of {Solutions} of {Infinite-Dimensional} {Systems} of {Ordinary} {Differential} {Equations}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {36--53},
year = {2002},
volume = {133},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a2/}
}
TY - JOUR AU - L. D. Pustyl'nikov TI - Space-Time Chaos, Critical Phenomena, and Bifurcations of Solutions of Infinite-Dimensional Systems of Ordinary Differential Equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2002 SP - 36 EP - 53 VL - 133 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a2/ LA - ru ID - TMF_2002_133_1_a2 ER -
%0 Journal Article %A L. D. Pustyl'nikov %T Space-Time Chaos, Critical Phenomena, and Bifurcations of Solutions of Infinite-Dimensional Systems of Ordinary Differential Equations %J Teoretičeskaâ i matematičeskaâ fizika %D 2002 %P 36-53 %V 133 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a2/ %G ru %F TMF_2002_133_1_a2
L. D. Pustyl'nikov. Space-Time Chaos, Critical Phenomena, and Bifurcations of Solutions of Infinite-Dimensional Systems of Ordinary Differential Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 1, pp. 36-53. http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a2/
[1] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR
[2] P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett., 59:4 (1987), 381 ; Phys. Rev. A, 38:1 (1988), 364 ; P. Bak, How Nature Works, Springer, Berlin, 1996 ; D. Dhar, Phys. Rev. Lett., 64 (1990), 1613 ; D. Dhar, S. N. Majumdar, J. Phys. A, 23 (1990), 4333 ; S. N. Majumdar, D. Dhar, Physica A, 185 (1992), 129 ; D. Dhar, R. Ramaswamy, Phys. Rev. Lett., 63 (1989), 1659 ; Díaz-guilera, Europhys. Lett., 26:3 (1994), 177 ; Díaz-guilera, Phys. Rev. A, 45:12 (1992), 8551 ; Europhys. Lett., 26:3 (1994), 177 ; H. J. Jensen, Self-Organized Criticality. Emergent Complex Behavior in Physical and Biological systems, Cambridge Univ. Press, Cambridge, 1998 ; L. Pietronero, P. Tartaglia, Y. C. Zhang, Physica A, 173 (1991), 22 ; R. Cafiero, V. Loreto, L. Pietronero, A. Vespignani, S. Zapperi, Europhys. Lett., 129:2 (1995), 111 ; L. Pietronero, A. Vespignani, S. Zapperi, Phys. Rev. Lett., 72 (1994), 1690 ; A. Vespignani, S. Zapperi, L. Pietronero, Phys. Rev. E, 51 (1995), 1711 ; H. Y. Zhang, Phys. Rev. Lett., 63:5 (1988), 470 ; S. N. Coppersmith, D. S. Fisher, Threshold behavior of a driven incommensurate harmonic chain, Preprint, Princeton University, Princeton, 1988; R. Burridge, L. Knopoff, Bull. Seismol. Sos. Am., 57 (1967), 341 | DOI | DOI | MR | Zbl | MR | DOI | MR | Zbl | DOI | MR | DOI | DOI | MR | DOI | DOI | MR | Zbl | DOI | MR | DOI | DOI | DOI | DOI
[3] R. V. Gamkrelidze (red.), Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 5, VINITI, M., 1986 | MR | Zbl
[4] L. D. Pustylnikov, TMF, 92:1 (1992), 85 | MR
[5] L. D. Pustylnikov, Kriticheskie yavleniya i bifurkatsii reshenii beskonechnomernykh sistem obyknovennykh differentsialnykh uravnenii, voznikayuschikh v nekotorykh fizicheskikh problemakh, Preprint No 43, IPM RAN, M., 2001
[6] V. G. Gelfreich, V. F. Lazutkin, N. V. Svanidze, Refined formula to separatrix spliting for the standard map, Warwick Preprints. No 59, 1992 | MR | Zbl