Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: II. An Algebraic Complex and Moves $2\leftrightarrow 4$
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 1, pp. 24-35
Cet article a éte moissonné depuis la source Math-Net.Ru
We present sequences of linear maps of vector spaces with fixed bases. Each term of a sequence is a linear space of differentials of metric values ascribed to the elements of a simplicial complex determining a triangulation of a manifold. If a sequence is an acyclic complex, then we can construct a manifold invariant using its torsion. We demonstrate this first for three-dimensional manifolds and then construct the part of this program for four-dimensional manifolds pertaining to moves $2\leftrightarrow 4$.
Keywords:
piecewise-linear manifolds, manifold invariants Pachner moves, differential identities for Euclidean simplices
Mots-clés : acyclic complexes.
Mots-clés : acyclic complexes.
@article{TMF_2002_133_1_a1,
author = {I. G. Korepanov},
title = {Euclidean {4-Simplices} and {Invariants} of {Four-Dimensional} {Manifolds:} {II.} {An} {Algebraic} {Complex} and {Moves} $2\leftrightarrow 4$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {24--35},
year = {2002},
volume = {133},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a1/}
}
TY - JOUR AU - I. G. Korepanov TI - Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: II. An Algebraic Complex and Moves $2\leftrightarrow 4$ JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2002 SP - 24 EP - 35 VL - 133 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a1/ LA - ru ID - TMF_2002_133_1_a1 ER -
%0 Journal Article %A I. G. Korepanov %T Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: II. An Algebraic Complex and Moves $2\leftrightarrow 4$ %J Teoretičeskaâ i matematičeskaâ fizika %D 2002 %P 24-35 %V 133 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a1/ %G ru %F TMF_2002_133_1_a1
I. G. Korepanov. Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: II. An Algebraic Complex and Moves $2\leftrightarrow 4$. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 1, pp. 24-35. http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a1/
[1] I. G. Korepanov, TMF, 131:3 (2001), 377–388 | DOI | MR
[2] I. G. Korepanov, J. Nonlinear Math. Phys., 8:2 (2001), 196–210 | DOI | MR | Zbl
[3] I. G. Korepanov, E. V. Martyushev, J. Nonlinear Math. Phys., 9:1 (2002), 86–98 | DOI | MR | Zbl
[4] Dzh. Milnor, “Kruchenie Uaitkheda”, Matematika. Sb. perevodov, 11:1 (1967), 3–42 | MR
[5] I. G. Korepanov, E. V. Martyushev, TMF, 129:1 (2001), 14–19 | DOI | MR | Zbl