Polynomial Poisson Algebras with Regular Structure of Symplectic Leaves
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 1, pp. 3-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study polynomial Poisson algebras with some regularity conditions. Linear (Lie–Berezin–Kirillov) structures on dual spaces of semisimple Lie algebras, quadratic Sklyanin elliptic algebras, and the polynomial algebras recently described by Bondal, Dubrovin, and Ugaglia belong to this class. We establish some simple determinant relations between the brackets and Casimir functions of these algebras. In particular, these relations imply that the sum of degrees of the Casimir functions coincides with the dimension of the algebra in the Sklyanin elliptic algebras. We present some interesting examples of these algebras and show that some of them arise naturally in the Hamiltonian integrable systems. A new class of two-body integrable systems admitting an elliptic dependence on both coordinates and momenta is among these examples.
Mots-clés : polynomial Poisson structures, elliptic algebras
Keywords: integrable systems.
@article{TMF_2002_133_1_a0,
     author = {A. V. Odesskii and V. N. Rubtsov},
     title = {Polynomial {Poisson} {Algebras} with {Regular} {Structure} of {Symplectic} {Leaves}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--23},
     year = {2002},
     volume = {133},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a0/}
}
TY  - JOUR
AU  - A. V. Odesskii
AU  - V. N. Rubtsov
TI  - Polynomial Poisson Algebras with Regular Structure of Symplectic Leaves
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 3
EP  - 23
VL  - 133
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a0/
LA  - ru
ID  - TMF_2002_133_1_a0
ER  - 
%0 Journal Article
%A A. V. Odesskii
%A V. N. Rubtsov
%T Polynomial Poisson Algebras with Regular Structure of Symplectic Leaves
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 3-23
%V 133
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a0/
%G ru
%F TMF_2002_133_1_a0
A. V. Odesskii; V. N. Rubtsov. Polynomial Poisson Algebras with Regular Structure of Symplectic Leaves. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 1, pp. 3-23. http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a0/

[1] B. Feigin, A. Odesskii, Funkts. analiz i ego prilozh., 23:3 (1989), 45–54 | MR

[2] B. Feigin, A. Odesskii, “Vector bundles on an elliptic curve and Sklyanin algebras”, Topics in quantum groups and finite-type invariants, Amer. Math. Soc. Transl. Ser. 2, 185, Amer. Math. Soc., Providence, RI, 1998, 65–84 | MR

[3] I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics, 118, Birkhäuser, Basel, 1994 | MR | Zbl

[4] A. Weinstein, J. Diff. Geom., 18:3 (1983), 523–557 | DOI | MR | Zbl

[5] E. K. Sklyanin, Funkts. analiz i ego prilozh., 16:4 (1982), 27–34 | MR | Zbl

[6] V. Fock, A. Gorsky, N. Nekrasov, V. Rubtsov, “Duality in integrable systems and gauge theories”, J. High Energy Phys., 2000, no. 7, Paper 28 | MR

[7] H. W. Braden, A. Marshakov, A. Mironov, A. Morozov, Nucl. Phys. B, 573:1–2 (2000), 553–572 ; | DOI | MR | Zbl | Zbl

[8] J. T. Stafford, M. Van den Bergh, Bull. Am. Math. Soc., 38:2 (2001), 171–216 | DOI | MR | Zbl

[9] H. Kim, C.-T. Lee, Phys. Lett. B, 536 (2002), 154–160 ; E-print hep-th/0105265 | DOI | MR | Zbl

[10] P. Candelas, A. M. Dale, C. A. Lutken, R. Schimmrigk, Nucl. Phys. B, 298:3 (1988), 493–525 | DOI | MR

[11] P. Candelas, de la Ossa, Xenia C., P. S. Green, L. Parkes, Nucl. Phys. B, 359:1 (1991), 21–74 | DOI | MR | Zbl

[12] Y. Nambu, Phys. Rev. D Ser. 3, 7 (1973), 2405–2412 | DOI | MR | Zbl

[13] L. Takhtajan, Commun. Math. Phys., 160:2 (1994), 295–315 | DOI | MR | Zbl

[14] J. A. de Azcárraga, A. M. Perelomov, J. C. Pérez Bueno, J. Phys. A, 29:24 (1996), 7993–8009 | DOI | MR | Zbl

[15] G. Khimshiashvili, Proc. A Razmadze Math. Inst., 119 (1999), 111–120 | MR | Zbl

[16] B. Dubrovin, “Differential geometry of the space of orbits of a Coxeter group”, Surveys in Differential Geometry, V. IV, ed. Chun-Lian Terng, Int. Press, Cambridge, MA, 1998, 181–211 | DOI | MR | Zbl

[17] M. Ugaglia, Int. Math. Res. Notices, 1999, no. 9, 473–493 | DOI | MR | Zbl

[18] Ph. Boalch, Invent. Math., 146 (2001), 479–506 ; E-print math.DG/0011062 | DOI | MR | Zbl

[19] L. O. Chekhov, V. V. Fock, Czech. J. Phys., 50:11 (2000), 1201–1208 | DOI | MR | Zbl

[20] J. E. Nelson, T. Regge, Phys. Lett. B, 272 (1991), 213–216 ; Commun. Math. Phys., 155 (1993), 561–568 | DOI | MR | DOI | MR | Zbl

[21] A. Bondal, A symplectic groupoid of triangular bilinear forms and the braid group, Preprint IHES M2000/02 | MR

[22] A. Korovnichenko, A. Zhedanov, “Dual algebras with non-linear Poisson brackets”, Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory, NATO Science series, 35, eds. S. Pakuliak, G. von Gehlen, Kluwer, Dordrecht, 2001, 265–272 | MR | Zbl

[23] S. Mukai, (Japanese) Sugaku Expositions, 1:2 (1988), 139–174 ; Sugaku, 39:3 (1987), 216–235 | MR | MR

[24] E. Cattani, D. Cox, A. Dickenstein, Compos. Math., 108:1 (1997), 35–76 | DOI | MR | Zbl

[25] M. Lynker, R. Schimmrigk, Nucl. Phys. B, 484:3 (1997), 562–582 | DOI | MR | Zbl

[26] P. Vanhaecke, Integrable Systems in the Realm of Algebraic Geometry, Lecture Notes in Mathematics, 1638, Springer, Berlin, 1996 | DOI | MR | Zbl

[27] M. Adler, P. van Moerbeke, Commun. Math. Phys., 83:1 (1982), 83–106 | DOI | MR | Zbl

[28] I. Krichever, A. Zabrodin, UMN, 50:6 (1995), 3–56 | MR | Zbl

[29] H. Braden, A. Gorsky, A. Odesskii, V. Rubtsov, Nucl. Phys. B, 633 (2002), 414–442 ; E-print hep-th/0111066 | DOI | MR | Zbl

[30] A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B, 355 (1995), 466–474 | DOI | MR | Zbl

[31] R. Donagi, E. Witten, Nucl. Phys. B, 460:2 (1996), 299–334 | DOI | MR | Zbl

[32] D. B. Fairlie, Phys. Lett. A, 119:9 (1987), 438–440 | DOI | MR

[33] R. S. Ward, J. Phys. A, 20:10 (1987), 2679–2683 | DOI | MR | Zbl