Polynomial Poisson Algebras with Regular Structure of Symplectic Leaves
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 1, pp. 3-23
Voir la notice de l'article provenant de la source Math-Net.Ru
We study polynomial Poisson algebras with some regularity conditions. Linear (Lie–Berezin–Kirillov) structures on dual spaces of semisimple Lie algebras, quadratic Sklyanin elliptic algebras, and the polynomial algebras recently described by Bondal, Dubrovin, and Ugaglia belong to this class. We establish some simple determinant relations between the brackets and Casimir functions of these algebras. In particular, these relations imply that the sum of degrees of the Casimir functions coincides with the dimension of the algebra in the Sklyanin elliptic algebras. We present some interesting examples of these algebras and show that some of them arise naturally in the Hamiltonian integrable systems. A new class of two-body integrable systems admitting an elliptic dependence on both coordinates and momenta is among these examples.
Mots-clés :
polynomial Poisson structures, elliptic algebras
Keywords: integrable systems.
Keywords: integrable systems.
@article{TMF_2002_133_1_a0,
author = {A. V. Odesskii and V. N. Rubtsov},
title = {Polynomial {Poisson} {Algebras} with {Regular} {Structure} of {Symplectic} {Leaves}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--23},
publisher = {mathdoc},
volume = {133},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a0/}
}
TY - JOUR AU - A. V. Odesskii AU - V. N. Rubtsov TI - Polynomial Poisson Algebras with Regular Structure of Symplectic Leaves JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2002 SP - 3 EP - 23 VL - 133 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a0/ LA - ru ID - TMF_2002_133_1_a0 ER -
A. V. Odesskii; V. N. Rubtsov. Polynomial Poisson Algebras with Regular Structure of Symplectic Leaves. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 1, pp. 3-23. http://geodesic.mathdoc.fr/item/TMF_2002_133_1_a0/