Causality Principle for a Reissner–Nordstrom Field in the RTG: The Small-Charge Case $q^2 \le m^2$
Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 3, pp. 475-483 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analyze the validity of the causality principle for the external electrovac solution generated by a static spherically symmetric and electrically charged body in the relativistic theory of gravity with a vanishing graviton mass, i.e., the Reissner–Nordstrom solution. We show that this principle restricts values of the constant in the external solution and also sets a lower bound for the source radius. We demonstrate that the external field of superdense star configurations satisfies the causality principle.
Keywords: relativistic theory of gravity, causality principle, Reissner–Nordstrom solution.
@article{TMF_2002_132_3_a9,
     author = {Yu. V. Chugreev},
     title = {Causality {Principle} for a {Reissner{\textendash}Nordstrom} {Field} in the {RTG:} {The} {Small-Charge} {Case} $q^2 \le m^2$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {475--483},
     year = {2002},
     volume = {132},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a9/}
}
TY  - JOUR
AU  - Yu. V. Chugreev
TI  - Causality Principle for a Reissner–Nordstrom Field in the RTG: The Small-Charge Case $q^2 \le m^2$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 475
EP  - 483
VL  - 132
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a9/
LA  - ru
ID  - TMF_2002_132_3_a9
ER  - 
%0 Journal Article
%A Yu. V. Chugreev
%T Causality Principle for a Reissner–Nordstrom Field in the RTG: The Small-Charge Case $q^2 \le m^2$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 475-483
%V 132
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a9/
%G ru
%F TMF_2002_132_3_a9
Yu. V. Chugreev. Causality Principle for a Reissner–Nordstrom Field in the RTG: The Small-Charge Case $q^2 \le m^2$. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 3, pp. 475-483. http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a9/

[1] Yu. P. Vyblyi, “Pole tochechnogo elektricheskogo zaryada v relyativistskoi teorii gravitatsii”, Tochnye resheniya uravnenii Einshteina i ikh fizicheskaya interpretatsiya, ed. I. R. Piir, Izd-vo Tartusskogo un-ta, Tartu, 1988, 74–76

[2] P. V. Karabut, Yu. V. Chugreev, TMF, 78:2 (1989), 305–313 | MR

[3] P. V. Karabut, Yu. V. Chugreev, TMF, 83:3 (1990), 470–475

[4] P. V. Karabut, Yu. V. Chugreev, TMF, 84:3 (1990), 474–480

[5] Yu. V. Chugreev, TMF, 88:3 (1991), 459–466 | MR

[6] A. A. Logunov, Teoriya gravitatsionnogo polya, Nauka, M., 2000 | MR

[7] R. M. Avakyan, “O reshenii dlya izolirovannoi massy v garmonicheskikh koordinatakh”, Tochnye resheniya uravnenii Einshteina i ikh fizicheskaya interpretatsiya, ed. I. R. Piir, Izd-vo Tartusskogo un-ta, Tartu, 1988, 22–24