Logunov”s RTG in the Light of the Affine Connection Geometry
Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 3, pp. 469-474
Cet article a éte moissonné depuis la source Math-Net.Ru
We study Logunov's theory of gravity from the standpoint of the affine connection geometry. Using the Lagrange–Hilbert variational method, we conclude that if a background metric can be introduced effectively, then the graviton mass must not be zero, but if the graviton mass is zero, then only the Christoffel connection is effective in the background metric.
Keywords:
relativistic theory of gravity, background metric
Mots-clés : graviton.
Mots-clés : graviton.
@article{TMF_2002_132_3_a8,
author = {N. A. Chernikov and N. S. Shavokhina},
title = {Logunov{\textquotedblright}s {RTG} in the {Light} of the {Affine} {Connection} {Geometry}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {469--474},
year = {2002},
volume = {132},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a8/}
}
N. A. Chernikov; N. S. Shavokhina. Logunov”s RTG in the Light of the Affine Connection Geometry. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 3, pp. 469-474. http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a8/
[1] A. A. Logunov, Teoriya gravitatsionnogo polya, Nauka, M., 2000 | MR
[2] A. P. Norden, Prostranstva affinnoi svyaznosti, Nauka, M., 1976 | MR
[3] A. Einshtein, “Geometriya i opyt”, Sobranie nauchnykh trudov, T. II, Nauka, M., 1966, 83
[4] M. Born, L. Infeld, Proc. Roy. Soc. A, 144 (1934), 425 | DOI | Zbl
[5] N. Rosen, Phys. Rev., 57 (1940), 147 | DOI | MR | Zbl
[6] D. Hilbert, Grundlagen der Pysik. Nachr. Göttingen, 1915, 395 | MR | Zbl
[7] N. A. Chernikov, Soobsch. OIYaI R2-87-683, Dubna, 1987 | MR
[8] N. A. Chernikov, Izv. vuzov. Matematika, 1976, no. 5, 114 | MR
[9] N. A. Chernikov, N. S. Shavokhina, Soobsch. OIYaI R2-81-434, Dubna, 1981 | MR
[10] N. A. Chernikov, N. S. Shavokhina, Izv. vuzov. Matematika, 1986, no. 4, 62 | MR | Zbl