Logunov''s RTG in the Light of the Affine Connection Geometry
Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 3, pp. 469-474
Voir la notice de l'article provenant de la source Math-Net.Ru
We study Logunov's theory of gravity from the standpoint of the affine connection geometry. Using the Lagrange–Hilbert variational method, we conclude that if a background metric can be introduced effectively, then the graviton mass must not be zero, but if the graviton mass is zero, then only the Christoffel connection is effective in the background metric.
Keywords:
relativistic theory of gravity, background metric
Mots-clés : graviton.
Mots-clés : graviton.
@article{TMF_2002_132_3_a8,
author = {N. A. Chernikov and N. S. Shavokhina},
title = {Logunov''s {RTG} in the {Light} of the {Affine} {Connection} {Geometry}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {469--474},
publisher = {mathdoc},
volume = {132},
number = {3},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a8/}
}
TY - JOUR AU - N. A. Chernikov AU - N. S. Shavokhina TI - Logunov''s RTG in the Light of the Affine Connection Geometry JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2002 SP - 469 EP - 474 VL - 132 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a8/ LA - ru ID - TMF_2002_132_3_a8 ER -
N. A. Chernikov; N. S. Shavokhina. Logunov''s RTG in the Light of the Affine Connection Geometry. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 3, pp. 469-474. http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a8/