Logunov''s RTG in the Light of the Affine Connection Geometry
Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 3, pp. 469-474

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Logunov's theory of gravity from the standpoint of the affine connection geometry. Using the Lagrange–Hilbert variational method, we conclude that if a background metric can be introduced effectively, then the graviton mass must not be zero, but if the graviton mass is zero, then only the Christoffel connection is effective in the background metric.
Keywords: relativistic theory of gravity, background metric
Mots-clés : graviton.
@article{TMF_2002_132_3_a8,
     author = {N. A. Chernikov and N. S. Shavokhina},
     title = {Logunov''s {RTG} in the {Light} of the {Affine} {Connection} {Geometry}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {469--474},
     publisher = {mathdoc},
     volume = {132},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a8/}
}
TY  - JOUR
AU  - N. A. Chernikov
AU  - N. S. Shavokhina
TI  - Logunov''s RTG in the Light of the Affine Connection Geometry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 469
EP  - 474
VL  - 132
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a8/
LA  - ru
ID  - TMF_2002_132_3_a8
ER  - 
%0 Journal Article
%A N. A. Chernikov
%A N. S. Shavokhina
%T Logunov''s RTG in the Light of the Affine Connection Geometry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 469-474
%V 132
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a8/
%G ru
%F TMF_2002_132_3_a8
N. A. Chernikov; N. S. Shavokhina. Logunov''s RTG in the Light of the Affine Connection Geometry. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 3, pp. 469-474. http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a8/