Quantum Mechanics as a Complete Physical Theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 3, pp. 434-448
Cet article a éte moissonné depuis la source Math-Net.Ru
We show that the principles of a “complete physical theory” and the conclusions of the standard quantum mechanics do not irreconcilably contradict each other as is commonly believed. In the algebraic approach, we formulate axioms that allow constructing a renewed mathematical scheme of quantum mechanics. This scheme involves the standard mathematical formalism of quantum mechanics. Simultaneously, it contains a mathematical object that adequately describes a single experiment. We give an example of the application of the proposed scheme.
Keywords:
quantum mechanics, physical reality, algebraic approach.
@article{TMF_2002_132_3_a6,
author = {D. A. Slavnov},
title = {Quantum {Mechanics} as {a~Complete} {Physical} {Theory}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {434--448},
year = {2002},
volume = {132},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a6/}
}
D. A. Slavnov. Quantum Mechanics as a Complete Physical Theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 3, pp. 434-448. http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a6/
[1] A. Einstein, B. Podolsky, N. Rosen, Phys. Rev., 77 (1935), 777 ; А. Эйнштейн, Б. Подольский, Н. Розен, УФН, 16 (1936), 440 | DOI
[2] D. A. Slavnov, TMF, 129 (2001), 87 ; E-print quant-ph/0101139 | DOI | MR | Zbl
[3] Zh. Emkh, Algebraicheskii podkhod v statisticheskoi mekhanike i kvantovoi teorii polya, Mir, M., 1976
[4] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR
[5] S. Kochen, E. P. Specker, J. Math. Fluid. Mech., 17 (1967), 59 | MR | Zbl
[6] Zh. Neve, Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969 | MR
[7] Zh. Diksme, $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR
[8] I. fon Neiman, Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR
[9] J. S. Bell, Physics (N. Y), 1 (1965), 195