Quasiexact Solution of a Relativistic Finite-Difference Analogue of the Schrödinger Equation for a Rectangular Potential Well
Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 3, pp. 408-433 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a well-posed formulation of the spectral problem for a relativistic analogue of the one-dimensional Schrödinger equation with differential operators replaced with operators of finite purely imaginary argument shifts $\exp ({\pm i\hbar d/dx})$. We find effective solution methods that permit determining the spectrum and investigating the properties of wave functions in a wide parameter range for this problem in the case of potentials of the type of a rectangular well. We show that the properties of solutions of these equations depend essentially on the relation between $\hbar$ and the parameters of the potential and a situation in which the solution for $\hbar \ll 1$ is nevertheless fundamentally different from its Schrödinger analogue is quite possible.
Keywords: relativistic problem on bound states, field quantization in Lorentz bases, finite-difference equations with imaginary step.
@article{TMF_2002_132_3_a5,
     author = {K. A. Sveshnikov and P. K. Silaev},
     title = {Quasiexact {Solution} of a {Relativistic} {Finite-Difference} {Analogue} of the {Schr\"odinger} {Equation} for a {Rectangular} {Potential} {Well}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {408--433},
     year = {2002},
     volume = {132},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a5/}
}
TY  - JOUR
AU  - K. A. Sveshnikov
AU  - P. K. Silaev
TI  - Quasiexact Solution of a Relativistic Finite-Difference Analogue of the Schrödinger Equation for a Rectangular Potential Well
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 408
EP  - 433
VL  - 132
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a5/
LA  - ru
ID  - TMF_2002_132_3_a5
ER  - 
%0 Journal Article
%A K. A. Sveshnikov
%A P. K. Silaev
%T Quasiexact Solution of a Relativistic Finite-Difference Analogue of the Schrödinger Equation for a Rectangular Potential Well
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 408-433
%V 132
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a5/
%G ru
%F TMF_2002_132_3_a5
K. A. Sveshnikov; P. K. Silaev. Quasiexact Solution of a Relativistic Finite-Difference Analogue of the Schrödinger Equation for a Rectangular Potential Well. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 3, pp. 408-433. http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a5/

[1] A. A. Logunov, A. N. Tavkhelidze, Nuovo Cimento, 29 (1963), 380 | DOI | MR

[2] V. G. Kadyshevskii, ZhETF, 46 (1963), 654; 872; ДАН СССР, 160 (1965), 573 | MR

[3] V. G. Kadyshevsky, Nucl. Phys. B, 6 (1968), 125 | DOI

[4] V. G. Kadyshevsky, R. M. Mir-Kasimov, N. B. Skachkov, Nuovo Cimento A, 55 (1968), 233 ; В. Г. Кадышевский, Р. М. Мир-Касимов, М. Фриман, ЯФ, 9 (1969), 646 ; M. Freeman, M. D. Mateev, R. M. Mir-Kasimov, Nucl. Phys. B, 12 (1969), 197 ; В. Г. Кадышевский, М. Д. Матеев, Р. М. Мир-Касимов, ЯФ, 11 (1970), 692; В. Г. Кадышевский, Р. М. Мир-Касимов, Н. Б. Скачков, ЭЧАЯ, 2 (1972), 635; Н. Б. Скачков, И. Л. Соловцов, ЭЧАЯ, 9 (1978), 5; А. Д. Донков, В. Г. Кадышевский, М. Д. Матеев, ТМФ, 50 (1982), 360 | DOI | MR | DOI | MR

[5] V. I. Savrin, V. B. Skachkov, Lett. Nuovo Cimento, 29 (1980), 363 ; V. I. Savrin, A. V. Sidorov, V. B. Skachkov, Hadronic J., 4 (1981), 1642; В. А. Матвеев, В. И. Саврин, А. Н. Сисакян, А. Н. Тавхелидзе, ТМФ, 132:2 (2002), 267 | DOI | DOI | MR | Zbl

[6] K. A. Sveshnikov, Phys. Lett. A, 136 (1989), 1 ; К. А. Свешников, ТМФ, 82 (1990), 55 | DOI | MR | MR

[7] A. O. Gelfond, Ischislenie konechnykh raznostei, Fizmatgiz, M., 1967 | MR

[8] K. A. Sveshnikov, P. K. Silaev, TMF, 108 (1996), 212 ; K. Sveshnikov, P. Silaev, I. Cherednikov, Mod. Phys. Lett. A, 12 (1997), 465 | DOI | MR | Zbl | DOI | MR | Zbl

[9] L. V. Kantorovich, V. I. Krylov, Priblizhennye metody vysshego analiza, GITTL, M., 1949 | MR

[10] V. V. Voevodin, Chislennye metody algebry. Teoriya i algoritmy, Nauka, M., 1966 ; В. В. Воеводин, Е. Е. Тыртышников, Вычислительные процессы с теплицевыми матрицами, Наука, М., 1987 | MR | Zbl | MR | Zbl