Vacuum Polarization Effects in a System of Two Three-Phase Chiral Bags
Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 3, pp. 363-387 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the model of three-phase chiral quark bags in $(1+1)$ dimensions, we obtain self-consistent solutions describing the system of two interacting bags. Attention is focused on investigating the role played by the fermionic vacuum polarization inside the bags in the dynamics of the system; the bosonic field interrelating the bags is taken into account only at the one-meson exchange level. The renormalized total energy of the system is investigated as a function of parameters characterizing the geometry of the problem and of the additional bag characteristics arising in $(1+1)$ dimensions. We show that in the system of two three-phase bags, vacuum polarization yields a strong nonlinear interaction at small distances, which can be either repulsive or attractive depending on the bag characteristics.
Keywords: hybrid chiral bag models, Dirac sea polarization effects.
Mots-clés : solitons
@article{TMF_2002_132_3_a2,
     author = {I. Yu. Malakhov and K. A. Sveshnikov},
     title = {Vacuum {Polarization} {Effects} in {a~System} of {Two} {Three-Phase} {Chiral} {Bags}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {363--387},
     year = {2002},
     volume = {132},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a2/}
}
TY  - JOUR
AU  - I. Yu. Malakhov
AU  - K. A. Sveshnikov
TI  - Vacuum Polarization Effects in a System of Two Three-Phase Chiral Bags
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 363
EP  - 387
VL  - 132
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a2/
LA  - ru
ID  - TMF_2002_132_3_a2
ER  - 
%0 Journal Article
%A I. Yu. Malakhov
%A K. A. Sveshnikov
%T Vacuum Polarization Effects in a System of Two Three-Phase Chiral Bags
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 363-387
%V 132
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a2/
%G ru
%F TMF_2002_132_3_a2
I. Yu. Malakhov; K. A. Sveshnikov. Vacuum Polarization Effects in a System of Two Three-Phase Chiral Bags. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 3, pp. 363-387. http://geodesic.mathdoc.fr/item/TMF_2002_132_3_a2/

[1] G. E. Brown, M. Rho, Phys. Lett. B, 82 (1979), 177 | DOI

[2] V. Vento, M. Rho, E. M. Nyman, J. H. Jun, G. E. Brown, Nucl. Phys. A, 345 (1980), 413 | DOI

[3] H. Hosaka, O. Toki, Phys. Rep., 277 (1996), 65 | DOI

[4] M. Rho, Phys. Rep., 240 (1994), 1 | DOI

[5] I. Zahed, G. E. Brown, Phys. Rep., 142 (1986), 1 | DOI | MR

[6] G. Holzwarth, B. Schwesinger, Rep. Progr. Phys., 49 (1986), 825 | DOI

[7] A. Chodos, C. B. Thorn, Phys. Rev. D, 11 (1975), 2733 | DOI | MR

[8] S. Gasiorowicz, J. L. Rosner, Am. J. Phys., 49 (1981), 1954 | DOI

[9] L. Montanet et al., Phys. Rev. D, 50 (1994), 1173 ; B. Povh et al., Particles and Nuclei, Springer, Berlin, 1995 | DOI

[10] M. Lavelle, D. McMillan, Phys. Rep., 279 (1997), 1 | DOI

[11] K. A. Sveshnikov, P. K. Silaev, TMF, 117 (1998), 263 | DOI | MR | Zbl

[12] I. Cherednikov, S. Fedorov, M. Khalili, K. Sveshnikov, Nucl. Phys. A, 676 (2000), 339 | DOI

[13] I. Yu. Malakhov, K. A. Sveshnikov, S. M. Fedorov, M. F. Khalili, TMF, 132:2 (2002), 238–266 ; E-print hep-ph/0201124 | DOI | MR | Zbl

[14] S. Théberge, A. W. Thomas, G. A. Miller, Phys. Rev. D, 22 (1980), 2838 ; 24 (1981), 216 | DOI | DOI

[15] A. W. Thomas, Adv. Nucl. Phys., 13 (1984), 1 | Zbl

[16] G. A. Miller, Int. Rev. Nucl. Phys., 2 (1984), 190

[17] S. Kahana, G. Ripka, V. Soni, Nucl. Phys. A, 415 (1984), 351 | DOI

[18] M. K. Banerjee, W. Broniowski, T. D. Cohen, “A chiral quark soliton model”, Chiral Solitons, ed. K. F. Liu, World Scientific, Singapoure, 1987, 255 | DOI | MR

[19] D. I. Diakonov, V. Yu. Petrov, P. V. Povilitsa, Nucl. Phys. B, 306 (1988), 809 | DOI

[20] M. C. Birse, Progr. Part. Nucl. Phys., 25 (1991), 1 | DOI

[21] R. Alkofer, H. Reinhardt, H. Weigel, Phys. Rep., 265 (1996), 139 | DOI | MR

[22] M. Creutz, Phys. Rev. D, 10 (1974), 1749 ; M. Creutz, K. Soh, Phys. Rev. D, 12 (1975), 443 | DOI | DOI | MR

[23] K. Sveshnikov, Phys. Lett. A, 136 (1989), 1 ; К. А. Свешников, ТМФ, 82:1 (1990), 55 | DOI | MR | MR

[24] R. Perry, M. Rho, Phys. Rev. D, 34 (1986), 1169 | DOI

[25] A. J. Niemi, G. W. Semenoff, Phys. Rep., 135 (1986), 99 | DOI | MR

[26] P. J. Mulders, Phys. Rev. D, 30 (1984), 1073 | DOI

[27] G. Plumien, B. Muller, W. Greiner, Phys. Rep., 134 (1986), 87 | DOI | MR

[28] A. D. Jackson, M. Rho, Phys. Lett. B, 173 (1986), 217 ; 220 | DOI

[29] A. D. Jackson, L. Vepstas, Phys. Rep., 187 (1990), 109 | DOI

[30] E. Elizalde, M. Bordag, K. Kirsten, J. Math. Phys., 37 (1996), 895 | DOI | MR | Zbl

[31] H. Falomir, M. DeFrancia, E. M. Santangelo, Phys. Lett. B, 371 (1996), 285 | DOI

[32] E. Elizalde, M. Bordag, K. Kirsten, S. Lesenduarte, J. Phys. A, 31 (1998), 1743 | DOI | MR | Zbl

[33] M. Bordag, U. Mohideen, V. Mostepanenko, Phys. Rep., 353 (2001), 1 | DOI | MR | Zbl