$N=(1|1)$ Supersymmetric Dispersionless Toda Lattice Hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 2, pp. 222-237
Voir la notice de l'article provenant de la source Math-Net.Ru
Generalizing the graded commutator in superalgebras, we propose a new bracket operation on the space of graded operators with an involution. We study properties of this operation and show that the Lax representation of the two-dimensional $N=(1|1)$ supersymmetric Toda lattice hierarchy can be realized via the generalized bracket operation; this is important in constructing the semiclassical (continuum) limit of this hierarchy. We construct the continuum limit of the $N=(1|1)$ Toda lattice hierarchy, the dispersionless $N=(1|1)$ Toda hierarchy. In this limit, we obtain the Lax representation, with the generalized graded bracket becoming the corresponding Poisson bracket on the graded phase superspace. We find bosonic symmetries of the dispersionless $N=(1|1)$ supersymmetric Toda equation.
Keywords:
integrable hierarchies, supersymmetry, Toda lattice, semiclassical limit.
@article{TMF_2002_132_2_a3,
author = {V. G. Kadyshevskii and A. S. Sorin},
title = {$N=(1|1)$ {Supersymmetric} {Dispersionless} {Toda} {Lattice} {Hierarchy}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {222--237},
publisher = {mathdoc},
volume = {132},
number = {2},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_2_a3/}
}
TY - JOUR AU - V. G. Kadyshevskii AU - A. S. Sorin TI - $N=(1|1)$ Supersymmetric Dispersionless Toda Lattice Hierarchy JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2002 SP - 222 EP - 237 VL - 132 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2002_132_2_a3/ LA - ru ID - TMF_2002_132_2_a3 ER -
V. G. Kadyshevskii; A. S. Sorin. $N=(1|1)$ Supersymmetric Dispersionless Toda Lattice Hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 2, pp. 222-237. http://geodesic.mathdoc.fr/item/TMF_2002_132_2_a3/