$N=(1|1)$ Supersymmetric Dispersionless Toda Lattice Hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 2, pp. 222-237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Generalizing the graded commutator in superalgebras, we propose a new bracket operation on the space of graded operators with an involution. We study properties of this operation and show that the Lax representation of the two-dimensional $N=(1|1)$ supersymmetric Toda lattice hierarchy can be realized via the generalized bracket operation; this is important in constructing the semiclassical (continuum) limit of this hierarchy. We construct the continuum limit of the $N=(1|1)$ Toda lattice hierarchy, the dispersionless $N=(1|1)$ Toda hierarchy. In this limit, we obtain the Lax representation, with the generalized graded bracket becoming the corresponding Poisson bracket on the graded phase superspace. We find bosonic symmetries of the dispersionless $N=(1|1)$ supersymmetric Toda equation.
Keywords: integrable hierarchies, supersymmetry, Toda lattice, semiclassical limit.
@article{TMF_2002_132_2_a3,
     author = {V. G. Kadyshevskii and A. S. Sorin},
     title = {$N=(1|1)$ {Supersymmetric} {Dispersionless} {Toda} {Lattice} {Hierarchy}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {222--237},
     year = {2002},
     volume = {132},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_2_a3/}
}
TY  - JOUR
AU  - V. G. Kadyshevskii
AU  - A. S. Sorin
TI  - $N=(1|1)$ Supersymmetric Dispersionless Toda Lattice Hierarchy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 222
EP  - 237
VL  - 132
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_132_2_a3/
LA  - ru
ID  - TMF_2002_132_2_a3
ER  - 
%0 Journal Article
%A V. G. Kadyshevskii
%A A. S. Sorin
%T $N=(1|1)$ Supersymmetric Dispersionless Toda Lattice Hierarchy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 222-237
%V 132
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2002_132_2_a3/
%G ru
%F TMF_2002_132_2_a3
V. G. Kadyshevskii; A. S. Sorin. $N=(1|1)$ Supersymmetric Dispersionless Toda Lattice Hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 2, pp. 222-237. http://geodesic.mathdoc.fr/item/TMF_2002_132_2_a3/

[1] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR

[2] K. Ueno, K. Takasaki, Adv. Stud. in Pure Math., 4, 1984, 1 | MR | Zbl

[3] K. Ikeda, Lett. Math. Phys., 14 (1987), 321 ; RIMS, 25 (1989), 829 | DOI | MR | DOI | Zbl

[4] K. Takasaki, Lett. Math. Phys., 19 (1990), 229 | DOI | MR | Zbl

[5] A. N. Leznov, A. S. Sorin, Phys. Lett. B, 389 (1996), 494 ; ; Nucl. Phys. B (Proc. Suppl.), 56 (1997), 258 E-print hep-th/9608166 | DOI | MR | DOI | MR

[6] O. Lechtenfeld, A. Sorin, Nucl. Phys. B, 557 (1999), 535 ; ; Nonlinear Math. Phys., 8 (2001), 183 ; E-print solv-int/9810009E-print nlin.SI/0007009 | DOI | MR | Zbl | DOI | MR | Zbl

[7] V. G. Kadyshevsky, A. S. Sorin, “Supersymmetric Toda lattice hierarchies”, Integrable Hierarchies and Modern Physical Theories, eds. H. Aratyn, A. S. Sorin, Kluwer Acad. Publ., Dordrecht–Boston–London, 2001, 289 ; E-print nlin.SI/0011009 | DOI | MR | Zbl

[8] M. V. Saveliev, P. Sorba, Lett. Math. Phys., 22 (1991), 119 | DOI | MR | Zbl

[9] V. G. Kadyshevsky, R. M. Mir-Kasimov, N. B. Skachkov, Nuovo Cimento. A, 55 (1968), 233 | DOI

[10] V. G. Kadyshevskii, R. M. Mir-Kasimov, N. V. Skachkov, YaF, 9 (1969), 212 | MR

[11] V. G. Kadyshevskii, R. M. Mir-Kasimov, N. V. Skachkov, YaF, 9 (1969), 462 | MR

[12] V. G. Kadyshevskii, R. M. Mir-Kasimov, M. Friman, YaF, 9 (1969), 646 | MR

[13] C. Itzykson, V. G. Kadyshevsky, I. T. Todorov, Phys. Rev. D, 1 (1970), 2823 | DOI

[14] V. G. Kadyshevskii, “Kvantovaya teoriya polya i impulsnoe prostranstvo postoyannoi krivizny”, Problemy teoreticheskoi fiziki, eds. V. I. Ritus (otv. red.) i dr., Nauka, M., 1972, 52 | MR

[15] V. G. Kadyshevsky, “Fundamental length as a new scale in quantum field theory”, Proceedings of the International Conference on High Energy Physics and Elementary Particles, ed. L. D. Nemenov, JINR, Dubna, 1975, 305

[16] D. V. Fursaev, V. G. Kadyshevsky, CRM Proceedings and Lecture Notes, 9, 1996, 125 | DOI | MR | Zbl

[17] K. Takasaki, T. Takebe, Lett. Math. Phys., 23 (1991), 205 ; E-print hep-th/9112042 | DOI | MR | Zbl

[18] K. Takasaki, T. Takebe, Lett. Math. Phys., 28 (1993), 165 ; E-print hep-th/9301070 | DOI | MR | Zbl

[19] K. Takasaki, T. Takebe, Rev. Math. Phys., 7 (1995), 743 ; E-print hep-th/9405096 | DOI | MR | Zbl

[20] C. P. Boyer, J. D. Finley, J. Math. Phys., 23 (1982), 1126 | DOI | MR | Zbl

[21] I. Bakas, Commun. Math. Lett., 134 (1990), 487 | DOI | MR | Zbl

[22] Q-Han Park, Phys. Lett. B, 236 (1990), 429 | DOI | MR

[23] R. S. Ward, Class. Quantum Grav., 7 (1990), L95 | DOI | MR | Zbl

[24] I. Krichever, Commun. Math. Phys., 143 (1992), 415 | DOI | MR | Zbl

[25] F. Delduc, M. V. Saveliev, P. Sorba, Phys. Lett. B, 277 (1992), 411 | DOI | MR

[26] J. Hoppe, Q-Han Park, Phys. Lett. B, 231 (1994), 333 ; E-print hep-th/9312020 | DOI | MR

[27] K. Takasaki, Commun. Math. Phys., 170 (1995), 101 ; E-print hep-th/9403190 | DOI | MR | Zbl

[28] L. Bonora, C. S. Xiong, Phys. Lett. B, 347 (1995), 41 ; E-print hep-th/9405004 | DOI | MR | Zbl

[29] D. M. Calderbank, P. Tod, Differ. Geom. Appl., 14 (2001), 199 ; E-print math.DG/9911121 | DOI | MR | Zbl

[30] V. Kazakov, I. Kostov, D. Kutasov, Nucl. Phys. B, 622 (2002), 141 ; E-print hep-th/0101011 | DOI | MR | Zbl

[31] S. Alexandrov, V. Kazakov, Nucl. Phys. B, 610 (2001), 77 ; E-print hep-th/0104094 | DOI | MR | Zbl

[32] D. B. Fairlie and A. N. Leznov, Infinite series solutions of the symmetry equation for the $1+2$ dimensional continuous Toda chain, E-print hep-th/9512217 | MR