A Step-Function Approximation in the Theory of Critical Fluctuations
Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 141-149
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider fluctuations near the critical point using the step-function approximation, i.e. the approximation of the order parameter field $f(x)$ by a sequence of step functions converging to $f(x)$. We show that the systematic application of this method leads to a trivial result in the case where the fluctuation probability is defined by the Landau Hamiltonian: the fluctuations disappear because the measure in the space of functions that describe the fluctuations proves to be supported on the single function $f\equiv 0$. This can imply that the approximation of the initial smooth functions by the step functions fails as a method for evaluating the functional integral and for defining the corresponding measure, although the step-function approximation proves to be effective in the Gaussian case and yields the same result as alternative methods do.
Keywords:
critical fluctuations, non-Gaussian functional integral, Landau Hamiltonian, step-function approximation.
@article{TMF_2002_132_1_a8,
author = {P. L. Rubin},
title = {A~Step-Function {Approximation} in the {Theory} of {Critical} {Fluctuations}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {141--149},
year = {2002},
volume = {132},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a8/}
}
P. L. Rubin. A Step-Function Approximation in the Theory of Critical Fluctuations. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 141-149. http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a8/
[1] L. D. Landau, E. M. Lifshits, Statisticheskaya fizika, Nauka, M., 1967 | Zbl
[2] K. Vilson, Dzh. Kogut, Renormalizatsionnaya gruppa i $\varepsilon$-razlozhenie, Mir, M., 1975
[3] V. N. Popov, Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, M., 1976 | MR
[4] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR | Zbl
[5] Yu. L. Daletskii, S. V. Fomin, Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1983 | MR
[6] N. Danford, Dzh. T. Shvarts, Lineinye operatory, T. 1, IL, M., 1962
[7] T. Khida, Brounovskoe dvizhenie, Nauka, M., 1987 | MR | Zbl
[8] Dzh. Glimm, A. Dzhaffe, Matematicheskie metody kvantovoi fiziki, Mir, M., 1984 | MR