A Step-Function Approximation in the Theory of Critical Fluctuations
Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 141-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider fluctuations near the critical point using the step-function approximation, i.e. the approximation of the order parameter field $f(x)$ by a sequence of step functions converging to $f(x)$. We show that the systematic application of this method leads to a trivial result in the case where the fluctuation probability is defined by the Landau Hamiltonian: the fluctuations disappear because the measure in the space of functions that describe the fluctuations proves to be supported on the single function $f\equiv 0$. This can imply that the approximation of the initial smooth functions by the step functions fails as a method for evaluating the functional integral and for defining the corresponding measure, although the step-function approximation proves to be effective in the Gaussian case and yields the same result as alternative methods do.
Keywords: critical fluctuations, non-Gaussian functional integral, Landau Hamiltonian, step-function approximation.
@article{TMF_2002_132_1_a8,
     author = {P. L. Rubin},
     title = {A~Step-Function {Approximation} in the {Theory} of {Critical} {Fluctuations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {141--149},
     year = {2002},
     volume = {132},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a8/}
}
TY  - JOUR
AU  - P. L. Rubin
TI  - A Step-Function Approximation in the Theory of Critical Fluctuations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 141
EP  - 149
VL  - 132
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a8/
LA  - ru
ID  - TMF_2002_132_1_a8
ER  - 
%0 Journal Article
%A P. L. Rubin
%T A Step-Function Approximation in the Theory of Critical Fluctuations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 141-149
%V 132
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a8/
%G ru
%F TMF_2002_132_1_a8
P. L. Rubin. A Step-Function Approximation in the Theory of Critical Fluctuations. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 141-149. http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a8/

[1] L. D. Landau, E. M. Lifshits, Statisticheskaya fizika, Nauka, M., 1967 | Zbl

[2] K. Vilson, Dzh. Kogut, Renormalizatsionnaya gruppa i $\varepsilon$-razlozhenie, Mir, M., 1975

[3] V. N. Popov, Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, M., 1976 | MR

[4] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR | Zbl

[5] Yu. L. Daletskii, S. V. Fomin, Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1983 | MR

[6] N. Danford, Dzh. T. Shvarts, Lineinye operatory, T. 1, IL, M., 1962

[7] T. Khida, Brounovskoe dvizhenie, Nauka, M., 1987 | MR | Zbl

[8] Dzh. Glimm, A. Dzhaffe, Matematicheskie metody kvantovoi fiziki, Mir, M., 1984 | MR