Dynamics of Inhomogeneous Chains of Coupled Quadratic Maps
Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 105-125

Voir la notice de l'article provenant de la source Math-Net.Ru

A new effective local analysis method is elaborated for coupled map dynamics. In contrast to the previously suggested methods, it allows visually investigating the evolution of synchronization and complex-behavior domains for a distributed medium described by a set of maps. The efficiency of the method is demonstrated with examples of ring and flow models of diffusively coupled quadratic maps. An analysis of a ring chain in the presence of space defects reveals some new global-behavior phenomena.
Keywords: distributed media, space–time chaos, coupled-map lattices.
@article{TMF_2002_132_1_a6,
     author = {A. Yu. Loskutov and A. K. Prokhorov and S. D. Rybalko},
     title = {Dynamics of {Inhomogeneous} {Chains} of {Coupled} {Quadratic} {Maps}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {105--125},
     publisher = {mathdoc},
     volume = {132},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a6/}
}
TY  - JOUR
AU  - A. Yu. Loskutov
AU  - A. K. Prokhorov
AU  - S. D. Rybalko
TI  - Dynamics of Inhomogeneous Chains of Coupled Quadratic Maps
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 105
EP  - 125
VL  - 132
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a6/
LA  - ru
ID  - TMF_2002_132_1_a6
ER  - 
%0 Journal Article
%A A. Yu. Loskutov
%A A. K. Prokhorov
%A S. D. Rybalko
%T Dynamics of Inhomogeneous Chains of Coupled Quadratic Maps
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 105-125
%V 132
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a6/
%G ru
%F TMF_2002_132_1_a6
A. Yu. Loskutov; A. K. Prokhorov; S. D. Rybalko. Dynamics of Inhomogeneous Chains of Coupled Quadratic Maps. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 105-125. http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a6/