Dynamics of Inhomogeneous Chains of Coupled Quadratic Maps
Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 105-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new effective local analysis method is elaborated for coupled map dynamics. In contrast to the previously suggested methods, it allows visually investigating the evolution of synchronization and complex-behavior domains for a distributed medium described by a set of maps. The efficiency of the method is demonstrated with examples of ring and flow models of diffusively coupled quadratic maps. An analysis of a ring chain in the presence of space defects reveals some new global-behavior phenomena.
Keywords: distributed media, space–time chaos, coupled-map lattices.
@article{TMF_2002_132_1_a6,
     author = {A. Yu. Loskutov and A. K. Prokhorov and S. D. Rybalko},
     title = {Dynamics of {Inhomogeneous} {Chains} of {Coupled} {Quadratic} {Maps}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {105--125},
     year = {2002},
     volume = {132},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a6/}
}
TY  - JOUR
AU  - A. Yu. Loskutov
AU  - A. K. Prokhorov
AU  - S. D. Rybalko
TI  - Dynamics of Inhomogeneous Chains of Coupled Quadratic Maps
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 105
EP  - 125
VL  - 132
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a6/
LA  - ru
ID  - TMF_2002_132_1_a6
ER  - 
%0 Journal Article
%A A. Yu. Loskutov
%A A. K. Prokhorov
%A S. D. Rybalko
%T Dynamics of Inhomogeneous Chains of Coupled Quadratic Maps
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 105-125
%V 132
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a6/
%G ru
%F TMF_2002_132_1_a6
A. Yu. Loskutov; A. K. Prokhorov; S. D. Rybalko. Dynamics of Inhomogeneous Chains of Coupled Quadratic Maps. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 105-125. http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a6/

[1] K. Kaneko, Physica D, 34 (1989), 1–41 | DOI | MR | Zbl

[2] K. Kaneko, Physica D, 37 (1989), 60–82 | DOI | MR

[3] L. A. Bunimovich, Ya. G. Sinai, “Statistical mechanics of coupled map lattices”, Theory and Applications of Coupled Map Lattices, ed. K. Kaneko, Wiley, San-Francisco, 1993, 169–189 | MR | Zbl

[4] Chaos. Focus Issue on Coupled Map Lattices, 2:3 (1992)

[5] K. Kaneko, F. Willeboords, Bifurcation and spatial chaos in open flow model, E-print chao-dyn/9312007

[6] R. Bishop, T. Schneider (eds.), Solitons and Condensed Matter Physics, Proc. of the Symposium on Nonlinear (Soliton) Structure and Dynamics in Condensed Matter (Oxford, England, June 27–29, 1978), Springer, Berlin, 1978 | MR

[7] K. Otsuka, K. Ikeda, Phys. Rev. Lett. A, 59 (1987), 194–197 | DOI

[8] K. Kaneko, F. Willeboords, Self-organized periodic lattices of chaotic defects, E-print chao-dyn/9405007

[9] K. A. Vasilev, A. Yu. Loskutov, S. D. Rybalko, D. N. Udin, TMF, 124:3 (2000), 506–519 | DOI | MR | Zbl

[10] M. Jiang, Ya. B. Pesin, Commun. Math. Phys., 193 (1998), 677–711 | DOI | MR

[11] G. Gielis, R. S. MacKay, Nonlinearity, 13 (2000), 867–888 | DOI | MR | Zbl

[12] S. Morita, Phys. Lett. A, 226 (1997), 172–178 | DOI

[13] A. P. Muñuzuri, V. Perez-Muñuzuri, M. Gomez-Gesteira, L. O. Chua, V. Perez-Villar, Int. J. Bif. Chaos, 5 (1995), 17–50 | DOI | Zbl

[14] A. Yu. Loskutov, G. E. Tomas, Vestn. Mosk. un-ta. Ser. Fiz., Astr., 48:5 (1993), 3–11 | MR | Zbl