Mots-clés : exact solution, soliton solution.
@article{TMF_2002_132_1_a4,
author = {Yong Chen and Zhenya Yan and Hongqing Zhang},
title = {Exact {Solutions} for {a~Family} of {Variable-Coefficient} {{\textquotedblleft}Reaction{\textendash}Duffing{\textquotedblright}} {Equations} via the {B\"acklund} {Transformation}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {90--96},
year = {2002},
volume = {132},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a4/}
}
TY - JOUR AU - Yong Chen AU - Zhenya Yan AU - Hongqing Zhang TI - Exact Solutions for a Family of Variable-Coefficient “Reaction–Duffing” Equations via the Bäcklund Transformation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2002 SP - 90 EP - 96 VL - 132 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a4/ LA - ru ID - TMF_2002_132_1_a4 ER -
%0 Journal Article %A Yong Chen %A Zhenya Yan %A Hongqing Zhang %T Exact Solutions for a Family of Variable-Coefficient “Reaction–Duffing” Equations via the Bäcklund Transformation %J Teoretičeskaâ i matematičeskaâ fizika %D 2002 %P 90-96 %V 132 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a4/ %G ru %F TMF_2002_132_1_a4
Yong Chen; Zhenya Yan; Hongqing Zhang. Exact Solutions for a Family of Variable-Coefficient “Reaction–Duffing” Equations via the Bäcklund Transformation. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 90-96. http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a4/
[1] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991 | MR | Zbl
[2] C. H. Gu (ed.), Soliton Theory and its Applications, Springer, Berlin, 1995
[3] Z. Y. Yan, H. Q. Zhang, Phys. Lett. A, 252 (1999), 291–296 | DOI | MR | Zbl
[4] Z. Y. Yan, H. Q. Zhang, Phys. Lett. A, 285 (2001), 355–362 | DOI | MR | Zbl
[5] Z. Y. Yan, H. Q. Zhang, J. Phys. A, 34 (2001), 1785–1794 | DOI | MR
[6] M. R. Miura (ed.), Backlund Transformation, the Inverse Scattering Method, Solitons, and Their Applications, Lect. Notes in Math., 515, Springer, Berlin, 1976 | DOI | MR
[7] Z. Y. Yan, H. Q. Zhang, Communications in Nonlinear Science and Numerical Simulation, 4(2) (1999), 145–149
[8] E. G. Fan, H. Q. Zhang, Acta Physics Sinica, 46(7) (1997), 1254–1259 | MR
[9] P. Constantin et al., Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Springer, New York, 1989 | MR
[10] G. Eilenberger, Solitons-Mathematical Methods for Physicist, Springer, New York, 1981, p. 4–35 | MR
[11] M. L. Wang, Phys. Lett. A, 213 (1996), 279–287 | DOI | MR | Zbl
[12] Z. Y. Yan, Communications in Nonlinear Science and Numerical Simulation, 5(1) (2000), 31–35 | DOI | MR | Zbl
[13] Z. Y. Yan, H. Q. Zhang, Acta Physics Sinica (Overseas Edition), 8(12) (1999), 889–894 | DOI