Exact Solutions for a Family of Variable-Coefficient “Reaction–Duffing” Equations via the Bäcklund Transformation
Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 90-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The homogeneous balance method is extended and applied to a class of variable-coefficient “reaction–duffing” equations, and a Bäcklund transformation (BT) is obtained. Based on the BT, a nonlocal symmetry and several families of exact solutions of this equation are obtained, including soliton solutions that have important physical significance. The Fitzhugh–Nagumo and Chaffee–Infante equations are also considered as special cases.
Keywords: “reaction–duffing” equation, Bäcklund transformation, symmetry
Mots-clés : exact solution, soliton solution.
@article{TMF_2002_132_1_a4,
     author = {Yong Chen and Zhenya Yan and Hongqing Zhang},
     title = {Exact {Solutions} for {a~Family} of {Variable-Coefficient} {{\textquotedblleft}Reaction{\textendash}Duffing{\textquotedblright}} {Equations} via the {B\"acklund} {Transformation}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {90--96},
     year = {2002},
     volume = {132},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a4/}
}
TY  - JOUR
AU  - Yong Chen
AU  - Zhenya Yan
AU  - Hongqing Zhang
TI  - Exact Solutions for a Family of Variable-Coefficient “Reaction–Duffing” Equations via the Bäcklund Transformation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 90
EP  - 96
VL  - 132
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a4/
LA  - ru
ID  - TMF_2002_132_1_a4
ER  - 
%0 Journal Article
%A Yong Chen
%A Zhenya Yan
%A Hongqing Zhang
%T Exact Solutions for a Family of Variable-Coefficient “Reaction–Duffing” Equations via the Bäcklund Transformation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 90-96
%V 132
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a4/
%G ru
%F TMF_2002_132_1_a4
Yong Chen; Zhenya Yan; Hongqing Zhang. Exact Solutions for a Family of Variable-Coefficient “Reaction–Duffing” Equations via the Bäcklund Transformation. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 90-96. http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a4/

[1] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991 | MR | Zbl

[2] C. H. Gu (ed.), Soliton Theory and its Applications, Springer, Berlin, 1995

[3] Z. Y. Yan, H. Q. Zhang, Phys. Lett. A, 252 (1999), 291–296 | DOI | MR | Zbl

[4] Z. Y. Yan, H. Q. Zhang, Phys. Lett. A, 285 (2001), 355–362 | DOI | MR | Zbl

[5] Z. Y. Yan, H. Q. Zhang, J. Phys. A, 34 (2001), 1785–1794 | DOI | MR

[6] M. R. Miura (ed.), Backlund Transformation, the Inverse Scattering Method, Solitons, and Their Applications, Lect. Notes in Math., 515, Springer, Berlin, 1976 | DOI | MR

[7] Z. Y. Yan, H. Q. Zhang, Communications in Nonlinear Science and Numerical Simulation, 4(2) (1999), 145–149

[8] E. G. Fan, H. Q. Zhang, Acta Physics Sinica, 46(7) (1997), 1254–1259 | MR

[9] P. Constantin et al., Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Springer, New York, 1989 | MR

[10] G. Eilenberger, Solitons-Mathematical Methods for Physicist, Springer, New York, 1981, p. 4–35 | MR

[11] M. L. Wang, Phys. Lett. A, 213 (1996), 279–287 | DOI | MR | Zbl

[12] Z. Y. Yan, Communications in Nonlinear Science and Numerical Simulation, 5(1) (2000), 31–35 | DOI | MR | Zbl

[13] Z. Y. Yan, H. Q. Zhang, Acta Physics Sinica (Overseas Edition), 8(12) (1999), 889–894 | DOI