Discrete Symmetries of the $n$-Wave Problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 74-89
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that discrete symmetries $T$ of multicomponent integrable systems have a fine structure and can be represented as products of positive integer powers of pairwise commuting basis discrete transformations $T_i$. The calculations are completed for the $n$-wave problem.
Keywords:
integrable mappings and chains, higher-dimensional integrable systems.
Mots-clés : discrete transformations, Darboux transformation
Mots-clés : discrete transformations, Darboux transformation
@article{TMF_2002_132_1_a3,
author = {A. N. Leznov},
title = {Discrete {Symmetries} of the $n${-Wave} {Problem}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {74--89},
publisher = {mathdoc},
volume = {132},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a3/}
}
A. N. Leznov. Discrete Symmetries of the $n$-Wave Problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 74-89. http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a3/