Discrete Symmetries of the $n$-Wave Problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 74-89

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that discrete symmetries $T$ of multicomponent integrable systems have a fine structure and can be represented as products of positive integer powers of pairwise commuting basis discrete transformations $T_i$. The calculations are completed for the $n$-wave problem.
Keywords: integrable mappings and chains, higher-dimensional integrable systems.
Mots-clés : discrete transformations, Darboux transformation
@article{TMF_2002_132_1_a3,
     author = {A. N. Leznov},
     title = {Discrete {Symmetries} of the $n${-Wave} {Problem}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {74--89},
     publisher = {mathdoc},
     volume = {132},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a3/}
}
TY  - JOUR
AU  - A. N. Leznov
TI  - Discrete Symmetries of the $n$-Wave Problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 74
EP  - 89
VL  - 132
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a3/
LA  - ru
ID  - TMF_2002_132_1_a3
ER  - 
%0 Journal Article
%A A. N. Leznov
%T Discrete Symmetries of the $n$-Wave Problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 74-89
%V 132
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a3/
%G ru
%F TMF_2002_132_1_a3
A. N. Leznov. Discrete Symmetries of the $n$-Wave Problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 74-89. http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a3/