Mots-clés : discrete transformations, Darboux transformation
@article{TMF_2002_132_1_a3,
author = {A. N. Leznov},
title = {Discrete {Symmetries} of the $n${-Wave} {Problem}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {74--89},
year = {2002},
volume = {132},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a3/}
}
A. N. Leznov. Discrete Symmetries of the $n$-Wave Problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 74-89. http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a3/
[1] V. E. Zakharov, S. M. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi rasseyaniya, Nauka, M., 1980 | MR
[2] A. N. Leznov, TMF, 73:2 (1987), 302 | MR
[3] A. N. Leznov, Backlund transformation for the self-dual Yang–Mills equations, Preprint IHEP 91-45, IHEP, Protvino, 1991; The solution of discrete symmetry equations for four-dimensional self-dual system in the case of arbitrary semisimple gauge algebra, Preprint MPI-40, MPI, Bonn, 1996
[4] A. N. Leznov, EChAYa, 27:5 (1996), 1161 | MR
[5] A. N. Leznov, T. A. Yuzbashyan, Phys. Lett. A, 242:1–2 (1998), 31 | DOI | MR | Zbl
[6] C. N. Yang, Phys. Rev. Lett., 38 (1977), 1377 | DOI | MR
[7] A. N. Leznov, TMF, 122:2 (2000), 251 ; 117:1 (1998), 107 | DOI | MR | Zbl | DOI | MR | Zbl