Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies Related to Them
Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 60-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct integrable bi-Hamiltonian hierarchies related to compatible nonlocal Poisson brackets of hydrodynamic type and solve the problem of the canonical form for a pair of compatible nonlocal Poisson brackets of hydrodynamic type. A system of equations describing compatible nonlocal Poisson brackets of hydrodynamic type is derived. This system can be integrated by the inverse scattering problem method. Any solution of this integrable system generates integrable bi-Hamiltonian systems of hydrodynamic type according to explicit formulas. We construct a theory of Poisson brackets of the special Liouville type. This theory plays an important role in the construction of integrable hierarchies.
Mots-clés : compatible Poisson brackets, nonlocal Poisson brackets of hydrodynamic type.
Keywords: systems of hydrodynamic type, compatible metrics, integrable hierarchies, bi-Hamiltonian structures
@article{TMF_2002_132_1_a2,
     author = {O. I. Mokhov},
     title = {Compatible {Nonlocal} {Poisson} {Brackets} of {Hydrodynamic} {Type} and {Integrable} {Hierarchies} {Related} to {Them}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {60--73},
     year = {2002},
     volume = {132},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a2/}
}
TY  - JOUR
AU  - O. I. Mokhov
TI  - Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies Related to Them
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 60
EP  - 73
VL  - 132
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a2/
LA  - ru
ID  - TMF_2002_132_1_a2
ER  - 
%0 Journal Article
%A O. I. Mokhov
%T Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies Related to Them
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 60-73
%V 132
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a2/
%G ru
%F TMF_2002_132_1_a2
O. I. Mokhov. Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies Related to Them. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 60-73. http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a2/

[1] O. I. Mokhov, Funkts. analiz i ego prilozh., 35:2 (2001), 24–36 ; E-print math.DG/0005051 | DOI | MR | Zbl

[2] O. I. Mokhov, UMN, 55:4 (2000), 217–218 | DOI | MR | Zbl

[3] B. A. Dubrovin, S. P. Novikov, DAN SSSR, 270:4 (1983), 781–785 | MR | Zbl

[4] O. I. Mokhov, “Compatible Dubrovin–Novikov Hamiltonian operators, Lie derivative and integrable systems of hydrodynamic type”, Proc. of the International Conference “Nonlinear Evolution Equations and Dynamical Systems” (Cambridge, July 24–30), 2001 (to appear) ; E-print math.DG/0201281 | MR

[5] O. I. Mokhov, UMN, 57:1 (2002), 157–158 | DOI | MR

[6] O. I. Mokhov, E. V. Ferapontov, UMN, 45:3 (1990), 191–192 | MR | Zbl

[7] O. I. Mokhov, Liouville canonical form for the compatible nonlocal Poisson brackets of hydrodynamic type, and integrable hierarchies, E-print math.DG/0201281 | MR

[8] B. A. Dubrovin, S. P. Novikov, UMN, 44:6 (1989), 29–98 | MR | Zbl

[9] S. P. Tsarev, DAN SSSR, 282:3 (1985), 534–537 | MR | Zbl

[10] S. P. Tsarev, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | MR | Zbl

[11] E. V. Ferapontov, Funkts. analiz i ego prilozh., 25:3 (1991), 37–49 | MR | Zbl

[12] O. I. Mokhov, Phys. Lett. A, 166:3–4 (1992), 215–216 | DOI | MR

[13] O. I. Mokhov, E. V. Ferapontov, Funkts. analiz i ego prilozh., 28:2 (1994), 60–63 | MR | Zbl

[14] F. Magri, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl

[15] A. Ya. Maltsev, S. P. Novikov, Physica D, 156:1–2 (2001), 53–80 ; E-print nlin.SI/0006030 | DOI | MR | Zbl

[16] O. I. Mokhov, Tr. MIRAN, 225, 1999, 284–300 | MR | Zbl

[17] I. M. Gelfand, I. Ya. Dorfman, Funkts. analiz i ego prilozh., 13:4 (1979), 13–30 | MR | Zbl

[18] B. Fuchssteiner, Nonlinear Anal. Theor. Meth. Appl., 3 (1979), 849–862 | DOI | MR | Zbl

[19] A. S. Fokas, B. Fuchssteiner, Lett. Nuovo Cimento, 28:8 (1980), 299–303 | DOI | MR

[20] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[21] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, John Wiley Sons, Chichester, 1993 | MR

[22] O. I. Mokhov, UMN, 53:3 (1998), 85–192 | DOI | MR | Zbl