Keywords: systems of hydrodynamic type, compatible metrics, integrable hierarchies, bi-Hamiltonian structures
@article{TMF_2002_132_1_a2,
author = {O. I. Mokhov},
title = {Compatible {Nonlocal} {Poisson} {Brackets} of {Hydrodynamic} {Type} and {Integrable} {Hierarchies} {Related} to {Them}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {60--73},
year = {2002},
volume = {132},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a2/}
}
TY - JOUR AU - O. I. Mokhov TI - Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies Related to Them JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2002 SP - 60 EP - 73 VL - 132 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a2/ LA - ru ID - TMF_2002_132_1_a2 ER -
O. I. Mokhov. Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies Related to Them. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 60-73. http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a2/
[1] O. I. Mokhov, Funkts. analiz i ego prilozh., 35:2 (2001), 24–36 ; E-print math.DG/0005051 | DOI | MR | Zbl
[2] O. I. Mokhov, UMN, 55:4 (2000), 217–218 | DOI | MR | Zbl
[3] B. A. Dubrovin, S. P. Novikov, DAN SSSR, 270:4 (1983), 781–785 | MR | Zbl
[4] O. I. Mokhov, “Compatible Dubrovin–Novikov Hamiltonian operators, Lie derivative and integrable systems of hydrodynamic type”, Proc. of the International Conference “Nonlinear Evolution Equations and Dynamical Systems” (Cambridge, July 24–30), 2001 (to appear) ; E-print math.DG/0201281 | MR
[5] O. I. Mokhov, UMN, 57:1 (2002), 157–158 | DOI | MR
[6] O. I. Mokhov, E. V. Ferapontov, UMN, 45:3 (1990), 191–192 | MR | Zbl
[7] O. I. Mokhov, Liouville canonical form for the compatible nonlocal Poisson brackets of hydrodynamic type, and integrable hierarchies, E-print math.DG/0201281 | MR
[8] B. A. Dubrovin, S. P. Novikov, UMN, 44:6 (1989), 29–98 | MR | Zbl
[9] S. P. Tsarev, DAN SSSR, 282:3 (1985), 534–537 | MR | Zbl
[10] S. P. Tsarev, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | MR | Zbl
[11] E. V. Ferapontov, Funkts. analiz i ego prilozh., 25:3 (1991), 37–49 | MR | Zbl
[12] O. I. Mokhov, Phys. Lett. A, 166:3–4 (1992), 215–216 | DOI | MR
[13] O. I. Mokhov, E. V. Ferapontov, Funkts. analiz i ego prilozh., 28:2 (1994), 60–63 | MR | Zbl
[14] F. Magri, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl
[15] A. Ya. Maltsev, S. P. Novikov, Physica D, 156:1–2 (2001), 53–80 ; E-print nlin.SI/0006030 | DOI | MR | Zbl
[16] O. I. Mokhov, Tr. MIRAN, 225, 1999, 284–300 | MR | Zbl
[17] I. M. Gelfand, I. Ya. Dorfman, Funkts. analiz i ego prilozh., 13:4 (1979), 13–30 | MR | Zbl
[18] B. Fuchssteiner, Nonlinear Anal. Theor. Meth. Appl., 3 (1979), 849–862 | DOI | MR | Zbl
[19] A. S. Fokas, B. Fuchssteiner, Lett. Nuovo Cimento, 28:8 (1980), 299–303 | DOI | MR
[20] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl
[21] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, John Wiley Sons, Chichester, 1993 | MR
[22] O. I. Mokhov, UMN, 53:3 (1998), 85–192 | DOI | MR | Zbl