Kinetic Theory of Quantum Electrodynamic Plasma in a Strong Electromagnetic Field: II. The Covariant Mean-Field Approximation
Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 161-176
Cet article a éte moissonné depuis la source Math-Net.Ru
A covariant kinetic equation for the matrix Wigner function is derived in the mean-field approximation from a general kinetic equation for the fermionic subsystem of a quantum electrodynamic plasma. We show that in the semiclassical limit, the equations for the components of the Wigner function can be transformed into closed kinetic equations for the Lorentz-invariant distribution functions of particles and antiparticles.
Keywords:
relativistic kinetic theory, quantum electrodynamic plasma, covariant mean-field approximation.
@article{TMF_2002_132_1_a10,
author = {V. G. Morozov and G. R\"opke and A. H\"oll},
title = {Kinetic {Theory} of {Quantum} {Electrodynamic} {Plasma} in {a~Strong} {Electromagnetic} {Field:~II.} {The} {Covariant} {Mean-Field} {Approximation}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {161--176},
year = {2002},
volume = {132},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a10/}
}
TY - JOUR AU - V. G. Morozov AU - G. Röpke AU - A. Höll TI - Kinetic Theory of Quantum Electrodynamic Plasma in a Strong Electromagnetic Field: II. The Covariant Mean-Field Approximation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2002 SP - 161 EP - 176 VL - 132 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a10/ LA - ru ID - TMF_2002_132_1_a10 ER -
%0 Journal Article %A V. G. Morozov %A G. Röpke %A A. Höll %T Kinetic Theory of Quantum Electrodynamic Plasma in a Strong Electromagnetic Field: II. The Covariant Mean-Field Approximation %J Teoretičeskaâ i matematičeskaâ fizika %D 2002 %P 161-176 %V 132 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a10/ %G ru %F TMF_2002_132_1_a10
V. G. Morozov; G. Röpke; A. Höll. Kinetic Theory of Quantum Electrodynamic Plasma in a Strong Electromagnetic Field: II. The Covariant Mean-Field Approximation. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 161-176. http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a10/
[1] V. G. Morozov, G. Repke, A. Khell, TMF, 131:3 (2002), 432 | DOI | Zbl
[2] I. Bialynicki-Birula, P. Górnicki, J. Rafelski, Phys. Rev. D, 44 (1991), 1825 | DOI
[3] K. Itsikson, Zh.-B. Zyuber, Kvantovaya teoriya polya, T. 1, 2, Mir, M., 1984 | MR
[4] G. R. Shin, J. Rafelski, Phys. Rev. A, 48 (1993), 4639 | DOI
[5] C. D. Roberts, S. M. Schmidt, Progr. Part. Nucl. Phys., 45 (2000), 1 | DOI
[6] J. C. R. Bloch, V. A. Mizerny, A. V. Prozorkevich, C. D. Roberts, S. M. Schmidt, S. A. Smolyansky, D. V. Vinnik, Phys. Rev. D, 60 (1999), 116011 | DOI
[7] S. de Groot, V. van Leuven, Kh. van Vert, Relyativistskaya kineticheskaya teoriya, Mir, M., 1983 | MR
[8] P. L. Shkolnikov et al., Appl. Phys. Lett., 71 (1997), 3471 | DOI