Modular Class of Even Symplectic Manifolds
Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 50-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We provide an intrinsic description of the notion of modular class for an even symplectic manifold and study its properties in this coordinate-free formalism.
Keywords: symplectic manifolds, volume element of a Berezinian, modular class, divergence operator.
@article{TMF_2002_132_1_a1,
     author = {J. Monterde and J. Vallejo},
     title = {Modular {Class} of {Even} {Symplectic} {Manifolds}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {50--59},
     year = {2002},
     volume = {132},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a1/}
}
TY  - JOUR
AU  - J. Monterde
AU  - J. Vallejo
TI  - Modular Class of Even Symplectic Manifolds
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 50
EP  - 59
VL  - 132
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a1/
LA  - ru
ID  - TMF_2002_132_1_a1
ER  - 
%0 Journal Article
%A J. Monterde
%A J. Vallejo
%T Modular Class of Even Symplectic Manifolds
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 50-59
%V 132
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a1/
%G ru
%F TMF_2002_132_1_a1
J. Monterde; J. Vallejo. Modular Class of Even Symplectic Manifolds. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 1, pp. 50-59. http://geodesic.mathdoc.fr/item/TMF_2002_132_1_a1/

[1] A. Lichnerowicz, J. Diff. Geom., 12:2 (1977), 253–300 | DOI | MR | Zbl

[2] J. L. Koszul, “Crochet de Schouten–Nijenhuis et Cohomologie.”, Astérisque, Hors série, 1985, 257–271 | MR | Zbl

[3] A. Weinstein, J. Geom. Phys., 23:3–4 (1997), 379–394 | DOI | MR | Zbl

[4] J. P. Dufour, A. Haraki, Compt. Rend. Acad. Sci., 312 (1991), 137–140 | MR | Zbl

[5] O. M. Khudaverdian, A. S. Schwarz, Yu. S. Tyupkin, Lett. Math. Phys., 5 (1981), 517–522 | DOI | MR | Zbl

[6] O. M. Khudaverdian, J. Math. Phys., 32:7 (1991), 1934–1937 | DOI | MR | Zbl

[7] O. M. Khudaverdian, Commun. Math. Phys., 198 (1998), 591–606 | DOI | MR | Zbl

[8] Y. Kosmann-Schwarzbach, Modular Vector Fields and Batalin–Vilkovisky Algebras, Banach Center Publications, Institute of Mathematics, Polish Acad. of Sciences, Warszawa, 1999 | MR

[9] Y. Kosmann-Schwarzbach, J. Monterde, Divergence operators and odd Poisson brackets, E-print arXiv: math.QA/0002209 v3 | MR

[10] F. A. Berezin, Introduction to Superanalysis, Reidel Publ., Dordrecht, 1987 | MR | Zbl

[11] B. Kostant, “Graded manifolds, graded Lie theory, and prequantization”, Differential geometrical methods in math. phys., Proc. Sympos. (Univ. Bonn, Bonn, 1975), Lecture Notes in Math., 570, eds. K. Bleuter, A. Reetz, Springer, Berlin, 1977, 177–306 | DOI | MR

[12] D. A. Leites, UMN, 35:1 (1980), 3–57 | MR | Zbl

[13] J. Monterde, O. A. Sánchez-Valenzuela, Israel J. Math., 85 (1997), 231–270 | DOI | MR

[14] J. Monterde, Diff. Geometry Appl., 2 (1992), 81–97 | DOI | MR | Zbl

[15] M. Rothstein, “The structure of supersymplectic supermanifolds”, Differential geometrical methods in theoretical physics, Lecture Notes in Phys., 375, eds. C. Bartocci, U. Bruzzo, R. Cianci, Springer, Berlin, 1991, 331–343 | DOI | MR

[16] D. Hernández Ruipérez, J. Muñoz Masqué, Compt. Rend. Acad. Sci. Paris, Sér. I Math., 301 (1985), 915–918 | MR | Zbl

[17] J. Monterde, O. A. Sánchez-Valenzuela, J. Geom. Phys., 10:4 (1993), 315–343 | DOI | MR | Zbl

[18] P. W. Michor, J. Geom. Phys., 2:2 (1985), 67–82 | DOI | MR | Zbl