Replica Symmetry Breaking in an Axial Model of Quadrupolar Glass
Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 3, pp. 479-490 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the replica symmetry breaking (RSB) in a neighborhood of the instability point of the replica-symmetric solution in the axial quadrupolar glass model. We show that the solution with the first-stage RSB is stable against the subsequent RSB. Although there is no reflection symmetry, the first-stage RSB solution continuously bifurcates from the replica-symmetric one. This implies that our model does not belong to either of the two classes into which spin glasses are usually divided.
@article{TMF_2002_131_3_a7,
     author = {N. V. Gribova and E. E. Tareeva},
     title = {Replica {Symmetry} {Breaking} in an {Axial} {Model} of {Quadrupolar} {Glass}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {479--490},
     year = {2002},
     volume = {131},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a7/}
}
TY  - JOUR
AU  - N. V. Gribova
AU  - E. E. Tareeva
TI  - Replica Symmetry Breaking in an Axial Model of Quadrupolar Glass
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 479
EP  - 490
VL  - 131
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a7/
LA  - ru
ID  - TMF_2002_131_3_a7
ER  - 
%0 Journal Article
%A N. V. Gribova
%A E. E. Tareeva
%T Replica Symmetry Breaking in an Axial Model of Quadrupolar Glass
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 479-490
%V 131
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a7/
%G ru
%F TMF_2002_131_3_a7
N. V. Gribova; E. E. Tareeva. Replica Symmetry Breaking in an Axial Model of Quadrupolar Glass. Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 3, pp. 479-490. http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a7/

[1] J.-P. Bouchaud, L. F. Cugliandolo, J. Kurchan, M. Mézard, Physica A, 226 (1996), 243 | DOI

[2] M. Mézard, First steps in glass theory, E-print cond-mat/0005173

[3] A. Crisanti, F. Ritort, Physica A, 280 (2000), 155 | DOI

[4] M. Mézard, G. Parisi, J. Phys. A, 29 (1996), 6515 ; Phys. Rev. Lett., 82 (1999), 747 | DOI | MR | Zbl | DOI

[5] B. Coluzzi, G. Parisi, P. Verrocchio, J. Chem. Phys., 112 (2000), 2933 | DOI

[6] G. Parisi, F. Slanina, Phys. Rev. E, 62 (2000), 6554 | DOI

[7] S. T. Chui, G. O. Williams, H. L. Frisch, Phys. Rev. B, 26 (1982), 171 | DOI | MR

[8] E. E. Tareyeva, V. N. Ryzhov, EChAYa, 31 (2000), 184

[9] W. Götze, “Structural glass transitions”, Liquid, freezing and glass transition, eds. J. P. Hansen, D. Levesque and J. Zinn-Justin, North-Holland, Amsterdam, 1991, 287

[10] T. R. Kirkpatrick, D. Thirumalai, Phys. Rev. B, 36 (1987), 5388 ; Phys. Rev. B, 37 (1988), 5342 ; T. R. Kirkpatrick, P. G. Wolynes, Phys. Rev. B, 36 (1987), 8552 | DOI | DOI | DOI

[11] E. E. Tareeva, DAN SSSR, 234 (1977), 572

[12] P. Goldbart, D. Elderfield, J. Phys. C, 18 (1985), L229 | DOI

[13] G. Franzese, A. Coniglio, Phys. Rev. E, 58 (1998), 2753 ; Philos. Mag. B, 79 (1999), 1807 | DOI | DOI

[14] J. M. de Araújo, F. A. da Costa, F. D. Nobre, Eur. J. Phys. B, 14 (2000), 661 | DOI

[15] J. M. de Araújo, F. A. da Costa, Eur. J. Phys. B, 15 (2000), 313 | DOI | MR

[16] M. Campellone, B. Coluzzi, G. Parisi, Phys. Rev. B, 58 (1998), 12081 | DOI

[17] E. A. Luchinskaya, E. E. Tareeva, TMF, 87 (1991), 473 ; ТМФ, 91 (1992), 157 | MR | Zbl | MR

[18] E. De Santis, G. Parisi, F. Ritort, J. Phys. A, 28 (1995), 3025 | DOI | MR

[19] D. J. Gross, I. Kanter, H. Sompolinsky, Phys. Rev. Lett., 55 (1985), 304 ; I. Kanter, H. Sompolinsky, Phys. Rev. B, 33 (1986), 2073 | DOI | DOI

[20] V. M. de Oliveira, J. F. Fontanari, J. Phys. A, 32 (1999), 2285 | DOI | MR | Zbl

[21] E. A. Lutchinskaia, V. N. Ryzhov, E. E. Tareyeva, J. Phys. C, 17 (1984), L665 | DOI

[22] E. A. Luchinskaya, V. N. Ryzhov, E. E. Tareeva, TMF, 67 (1986), 463 | MR

[23] M. I. Vladimir, S. P. Kozhukhar, V. A. Moskalenko, TMF, 71 (1987), 417

[24] V. A. Moskalenko, M. I. Vladimir, S. P. Kozhukhar, Metod samosoglasovannogo polya v teorii stekolnogo sostoyaniya spinovykh i kvadrupolnykh sistem, Shtiintsa, Kishinev, 1990 | MR

[25] N. S. Sullivan, C. M. Edwards, J. R. Brookeman, Mol. Cryst. Liq. Cryst., 139 (1986), 365 | DOI

[26] E. A. Lutchinskaia, E. E. Tareyeva, Phys. Rev. B, 52 (1995), 366 | DOI

[27] L. De Cesare, K. Lukerska-Walasek, I. Rubuffo, K. Walasek, Phys. Rev. B, 45 (1992), 1041 ; K. Walasek, K. Lukerska-Walasek, Phys. Rev. B, 49 (1994), 9960 | DOI

[28] K. Walasek, Phys. Rev. B, 46 (1992), 14480 | DOI

[29] T. K. Kopec, Phys. Rev. B, 48 (1993), 3698 ; Phys. Rev. B, 48 (1994), 15658 ; Phys. Rev. B, 48 (1994), 16792 | DOI | DOI | DOI

[30] K. Walasek, Phys. Rev. B, 51 (1993), 9314 | DOI

[31] J. R. L. Almeida, D. J. Thouless, J. Phys. A, 11 (1978), 983 | DOI

[32] M. M. Vainberg, V. A. Trenogin, Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR

[33] A. Crisanti, H. J. Sommers, Z. Phys. B, 87 (1992), 341 | DOI