Asymptotic Series for the Spectrum of the Schrödinger Operator for Layers Coupled Through Small Windows
Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 3, pp. 407-418 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic series for eigenvalues and bands for the Laplacian of the Dirichlet problem for three-dimensional layers coupled through small windows is constructed. We use the method of matching the asymptotic expansions of the solutions of boundary-value problems.
@article{TMF_2002_131_3_a3,
     author = {I. Yu. Popov},
     title = {Asymptotic {Series} for the {Spectrum} of the {Schr\"odinger} {Operator} for {Layers} {Coupled} {Through} {Small} {Windows}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {407--418},
     year = {2002},
     volume = {131},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a3/}
}
TY  - JOUR
AU  - I. Yu. Popov
TI  - Asymptotic Series for the Spectrum of the Schrödinger Operator for Layers Coupled Through Small Windows
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 407
EP  - 418
VL  - 131
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a3/
LA  - ru
ID  - TMF_2002_131_3_a3
ER  - 
%0 Journal Article
%A I. Yu. Popov
%T Asymptotic Series for the Spectrum of the Schrödinger Operator for Layers Coupled Through Small Windows
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 407-418
%V 131
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a3/
%G ru
%F TMF_2002_131_3_a3
I. Yu. Popov. Asymptotic Series for the Spectrum of the Schrödinger Operator for Layers Coupled Through Small Windows. Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 3, pp. 407-418. http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a3/

[1] C. W. J. Beenakker, H. van Houten, “Quantum transport in semiconductor nanostructures”, Solid State Physics. Advances in Research and Applications. V. 44, eds. H. Ehrenreich, D. Turnbull, Academic Press, New York, 1991, 1–228

[2] P. Duclos, P. Exner, Rev. Math. Phys, 7 (1995), 73–102 | DOI | MR | Zbl

[3] W. Bulla, F. Gesztesy, W. Renger, B. Simon, Proc. Am. Math. Soc., 125 (1997), 1487–1495 | DOI | MR | Zbl

[4] Y. Takagaki, K. Ploog, Phys. Rev. B, 49:3 (1994), 1782–1788 | DOI

[5] I. Yu. Popov, S. L. Popova, Europhys. Lett., 24:5 (1993), 373–377 | DOI | MR

[6] P. Exner, S. Vugalter, Ann. Inst. Henri Poincare, 65:1 (1996), 109–123 | MR | Zbl

[7] Ch. Kunze, Phys. Rev. B, 48 (1993), 14338–14346 | DOI

[8] P. Exner, S. Vugalter, J. Phys. A: Math. Gen., 30 (1997), 7863–7878 | DOI | MR | Zbl

[9] I. Yu. Popov, Pisma v ZhTF, 25:Vyp. 3. (1999), 57–59

[10] I. Yu. Popov, Rep. Math. Phys., 43:3 (1999), 427–437 | DOI | MR | Zbl

[11] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[12] R. R. Gadylshin, Algebra i analiz, 4:2 (1992), 88–115 | MR

[13] B. Simon, Ann. Phys., 97 (1976), 279–288 | DOI | MR | Zbl

[14] I. Yu. Popov, Phys. Lett. A, 269:2–3 (2000), 148–153 | DOI | MR | Zbl

[15] S. V. Frolov, I. Yu. Popov, J. Math. Phys., 41:7 (2000), 4391–4405 | DOI | MR | Zbl

[16] N. S. Landkof, Foundation of Modern Potential Theory, Springer-Verlag, Berlin, 1972 | MR | Zbl

[17] G. Polya, G. Szego, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, 1951 | MR | Zbl

[18] G. I. Eskin, Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973

[19] M. Schiffer, G. Szego, Trans. Amer. Math. Soc., 67:1 (1949), 130–205 | DOI | MR | Zbl

[20] A. P. Prudnikov, Yu. A. Brychkov, O. M. Marichev, Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983 | MR | Zbl

[21] S. Albeverio, F. Gestezi, R. Kheeg-Kron, Kh. Kholden, Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991 | MR