@article{TMF_2002_131_3_a2,
author = {A. V. Pereskokov},
title = {Asymptotic {Solutions} of {Two-Dimensional} {Hartree-Type} {Equations} {Localized} in the {Neighborhood} of {Line} {Segments}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {389--406},
year = {2002},
volume = {131},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a2/}
}
TY - JOUR AU - A. V. Pereskokov TI - Asymptotic Solutions of Two-Dimensional Hartree-Type Equations Localized in the Neighborhood of Line Segments JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2002 SP - 389 EP - 406 VL - 131 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a2/ LA - ru ID - TMF_2002_131_3_a2 ER -
%0 Journal Article %A A. V. Pereskokov %T Asymptotic Solutions of Two-Dimensional Hartree-Type Equations Localized in the Neighborhood of Line Segments %J Teoretičeskaâ i matematičeskaâ fizika %D 2002 %P 389-406 %V 131 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a2/ %G ru %F TMF_2002_131_3_a2
A. V. Pereskokov. Asymptotic Solutions of Two-Dimensional Hartree-Type Equations Localized in the Neighborhood of Line Segments. Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 3, pp. 389-406. http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a2/
[1] D. R. Hartree, Proc. Cambridge Philos. Soc., 24 (1928), 89 ; 111 ; 426 | DOI | Zbl
[2] S. I. Pekar, Issledovaniya po elektronnoi teorii kristallov, Gostekhizdat, M., 1951
[3] P. Ring, P. Schuck, The Nuclear Many-Body Problem, Springer, Berlin, 1980 | MR
[4] G. V. Gadiyak, K. A. Nasyrov, Chisl. met. mekh. splosh. sredy (Novosibirsk), 12:5 (1981), 3 | Zbl
[5] J. Kurlandski, Bull. Acad. Polon. Sci., 30:3–4 (1982), 135
[6] V. M. Olkhov, TMF, 51:1 (1982), 150 | MR
[7] D. V. Chudnovsky, “Infinite component two-dimensional completely integrable systems of KdV type”, The Riemann Problem, Complete Integrability and Arithmetic Application, Proc. of a Seminar (IHES and Columbia Univ., 1979–1980), Lect. Notes Math., 925, eds. D. Chudnovsky and G. Chudnovsky, Springer, Berlin, 1982, 71 | DOI | MR
[8] Yu. N. Karamzin, I. L. Tsvetkova, ZhVMiMF, 22:1 (1982), 235 | MR | Zbl
[9] A. A. Bogolyubskaya, I. L. Bogolyubskii, TMF, 54:2 (1983), 258
[10] D. Gogny, P. L. Lions, Model. Math. Anal. Numer., 20:4 (1986), 571 | DOI | MR | Zbl
[11] V. P. Maslov, Kompleksnye markovskie tsepi i kontinualnyi integral Feinmana, Nauka, M., 1976 | MR
[12] V. P. Maslov, “Uravneniya samosoglasovannogo polya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 11, ed. R. V. Gamkrelidze, VINITI, M., 1978, 153 | MR
[13] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR
[14] I. V. Simenog, TMF, 30:3 (1977), 408 | MR
[15] M. V. Karasev, V. P. Maslov, “Algebry s obschimi perestanovochnymi sootnosheniyami i ikh prilozheniya. II: Operatornye unitarno-nelineinye uravneniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 13, ed. R. V. Gamkrelidze, VINITI, M., 1979, 145
[16] M. V. Karasev, A. V. Pereskokov, TMF, 97:1 (1993), 78 | MR
[17] M. V. Karasev, Yu. V. Osipov, TMF, 52:2 (1982), 263 | MR
[18] M. V. Karasev, Kvantovaya reduktsiya na orbity algebr simmetrii i zadacha Erenfesta, Preprint ITF-87-157R, ITF AN SSSR, Kiev, 1987
[19] R. R. Gabdullin, Malomernaya approksimatsiya reshenii uravneniya polyarona Pekara, Preprint, NTsBI AN SSSR, Puschino, 1991
[20] M. V. Karasev, A. V. Pereskokov, Izv. RAN. Ser. matem., 65:5 (2001), 33 | DOI | MR | Zbl
[21] M. V. Karasev, A. V. Pereskokov, Izv. RAN. Ser. matem., 65:6 (2001), 57 | DOI | MR | Zbl