Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: I. Moves $3\to 3$.
Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 3, pp. 377-388
Cet article a éte moissonné depuis la source Math-Net.Ru
We construct invariants of four-dimensional piecewise linear manifolds, represented as simplicial complexes, with respect to moves that transform a cluster of three 4-simplices having a common two-dimensional face to a different cluster of the same type and having the same boundary. Our construction is based on using Euclidean geometric quantities.
@article{TMF_2002_131_3_a1,
author = {I. G. Korepanov},
title = {Euclidean {4-Simplices} and {Invariants} of {Four-Dimensional} {Manifolds:} {I.} {Moves} $3\to 3$.},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {377--388},
year = {2002},
volume = {131},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a1/}
}
TY - JOUR AU - I. G. Korepanov TI - Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: I. Moves $3\to 3$. JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2002 SP - 377 EP - 388 VL - 131 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a1/ LA - ru ID - TMF_2002_131_3_a1 ER -
I. G. Korepanov. Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: I. Moves $3\to 3$.. Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 3, pp. 377-388. http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a1/
[1] I. G. Korepanov, J. Nonlinear Math. Phys., 8:2 (2001), 196–210 | DOI | MR | Zbl
[2] I. G. Korepanov, E. V. Martyushev, J. Nonlinear Math. Phys., 9:1 (2002), 86–98 | DOI | MR | Zbl
[3] I. G. Korepanov, A formula with hypervolumes of six 4-simplices and two discrete curvatures, E-print nlin.SI/0003024
[4] J. Milnor, “The Schläfli differential equality”, Collected Papers. V. 1. Geometry, Publish or Perish, Houston, Texas, 1993, 281–295 | MR
[5] I. G. Korepanov, TMF, 124:1 (2000), 169–176 | DOI | MR | Zbl