Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: I. Moves $3\to 3$.
Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 3, pp. 377-388 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct invariants of four-dimensional piecewise linear manifolds, represented as simplicial complexes, with respect to moves that transform a cluster of three 4-simplices having a common two-dimensional face to a different cluster of the same type and having the same boundary. Our construction is based on using Euclidean geometric quantities.
@article{TMF_2002_131_3_a1,
     author = {I. G. Korepanov},
     title = {Euclidean {4-Simplices} and {Invariants} of {Four-Dimensional} {Manifolds:} {I.} {Moves} $3\to 3$.},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {377--388},
     year = {2002},
     volume = {131},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a1/}
}
TY  - JOUR
AU  - I. G. Korepanov
TI  - Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: I. Moves $3\to 3$.
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 377
EP  - 388
VL  - 131
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a1/
LA  - ru
ID  - TMF_2002_131_3_a1
ER  - 
%0 Journal Article
%A I. G. Korepanov
%T Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: I. Moves $3\to 3$.
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 377-388
%V 131
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a1/
%G ru
%F TMF_2002_131_3_a1
I. G. Korepanov. Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: I. Moves $3\to 3$.. Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 3, pp. 377-388. http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a1/

[1] I. G. Korepanov, J. Nonlinear Math. Phys., 8:2 (2001), 196–210 | DOI | MR | Zbl

[2] I. G. Korepanov, E. V. Martyushev, J. Nonlinear Math. Phys., 9:1 (2002), 86–98 | DOI | MR | Zbl

[3] I. G. Korepanov, A formula with hypervolumes of six 4-simplices and two discrete curvatures, E-print nlin.SI/0003024

[4] J. Milnor, “The Schläfli differential equality”, Collected Papers. V. 1. Geometry, Publish or Perish, Houston, Texas, 1993, 281–295 | MR

[5] I. G. Korepanov, TMF, 124:1 (2000), 169–176 | DOI | MR | Zbl