Calogero Operator and Lie Superalgebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 3, pp. 355-376 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a supersymmetric analogue of the Calogero operator $\mathcal S\mathcal L$ which depends on the parameter $k$. This analogue is related to the root system of the Lie superalgebra $\mathfrak {gl}(n|m)$. It becomes the standard Calogero operator for $m = 0$ and becomes the operator constructed by Veselov, Chalykh, and Feigin up to changing the variables and the parameter $k$ for $m = 1$. For $k = 1$ and 1/2, the operator $\mathcal S\mathcal L$ is the radial part of the second-order Laplace operator for the symmetric superspaces corresponding to the respective pairs $(\mathfrak {gl}\oplus \mathfrak {gl}, \mathfrak {gl})$, $(\mathfrak {gl},\mathfrak {osp})$. We show that for any m and n, the supersymmetric analogues of the Jack polynomials constructed by Kerov, Okounkov, and Olshanskii are eigenfunctions of the operator $\mathcal S\mathcal L$. For $k = 1$ and 1/2, the supersymmetric analogues of the Jack polynomials coincide with the spherical functions on the above superspaces. We also study the algebraic analogue of the Berezin integral.
@article{TMF_2002_131_3_a0,
     author = {A. N. Sergeev},
     title = {Calogero {Operator} and {Lie} {Superalgebras}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {355--376},
     year = {2002},
     volume = {131},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a0/}
}
TY  - JOUR
AU  - A. N. Sergeev
TI  - Calogero Operator and Lie Superalgebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 355
EP  - 376
VL  - 131
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a0/
LA  - ru
ID  - TMF_2002_131_3_a0
ER  - 
%0 Journal Article
%A A. N. Sergeev
%T Calogero Operator and Lie Superalgebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 355-376
%V 131
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a0/
%G ru
%F TMF_2002_131_3_a0
A. N. Sergeev. Calogero Operator and Lie Superalgebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 3, pp. 355-376. http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a0/

[1] A. Sergeev, J. Nonlinear Math. Phys., 8 (2001), 59 | DOI | MR | Zbl

[2] L. Brink, T. Hanson, S. Konstein, M. Vasiliev, Nucl. Phys. B, 401 (1993), 591 | DOI | MR | Zbl

[3] P. Desrosiers, L. Lapointe, P. Mathieu, Supersymmetric Calogero–Moser–Sutherland model and Jack superpolynomials, E-print hep-th/0103178 | MR

[4] P. Desrosiers, L. Lapointe, P. Mathieu, Jack superpolynomials, superpartition ordering and determinantal formulas, E-print hep-th/0105107 | MR

[5] M. Scheunert, R. Zhang, Integration on Lie supergroups, E-print math.RA/0012052 | MR

[6] V. Serganova, Funkts. analiz i ego prilozh., 17:3 (1983), 46 | MR | Zbl

[7] M. Olshanetsky, A. Perelomov, Phys. Rep., 94:6 (1983), 313 | DOI | MR

[8] A. P. Veselov, M. V. Feigin, O. A. Chalykh, UMN, 51:3 (1996), 185 | DOI | MR | Zbl

[9] O. Chalykh, M. Feigin, A. Veselov, Commun. Math. Phys., 206:3 (1999), 533 | DOI | MR | Zbl

[10] L. Lapointe, L. Vinet, Commun. Math. Phys., 178:2 (1996), 425 | DOI | MR | Zbl

[11] I. Macdonald, Symmetric functions and Hall polynomials, Clarendon, Oxford, 1995 | MR | Zbl

[12] R. Stanley, Adv. Math., 77 (1996), 76 | DOI | MR

[13] S. Kerov, A. Okounkov, G. Olshanski, Int. Math. Res. Notices, 1998, no. 4, 173 | DOI | MR | Zbl

[14] A. Sergeev, Matem. sb., 165 (1984), 422 | MR

[15] A. Sergeev, Michigan J. Math., 49 (2001), 113 | DOI | MR | Zbl

[16] Zh. Diksme, Universalnye obertyvayuschie algebry, Mir, M., 1978 | MR

[17] S. Sahi, Int. Math. Res. Notices, 20 (1996), 997 | DOI | MR | Zbl

[18] F. A. Berezin, Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, Izd-vo MGU, M., 1983 | MR