Dynamic Systems Admitting the Normal Shift and Wave Equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 2, pp. 244-260
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider wave equations on Riemannian manifolds and investigate wave front dynamics in the semiclassical approximation. The problem of finding wave equations whose wave front dynamics is described by Newtonian dynamic systems admitting the normal shift is solved. A subclass of these dynamic systems that can be defined by modified Lagrange and Hamilton equations is described explicitly.
@article{TMF_2002_131_2_a6,
     author = {R. A. Sharipov},
     title = {Dynamic {Systems} {Admitting} the {Normal} {Shift} and {Wave} {Equations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {244--260},
     year = {2002},
     volume = {131},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_131_2_a6/}
}
TY  - JOUR
AU  - R. A. Sharipov
TI  - Dynamic Systems Admitting the Normal Shift and Wave Equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 244
EP  - 260
VL  - 131
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_131_2_a6/
LA  - ru
ID  - TMF_2002_131_2_a6
ER  - 
%0 Journal Article
%A R. A. Sharipov
%T Dynamic Systems Admitting the Normal Shift and Wave Equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 244-260
%V 131
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2002_131_2_a6/
%G ru
%F TMF_2002_131_2_a6
R. A. Sharipov. Dynamic Systems Admitting the Normal Shift and Wave Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 2, pp. 244-260. http://geodesic.mathdoc.fr/item/TMF_2002_131_2_a6/

[1] M. V. Fedoryuk, “Uravneniya s bystro ostsilliruyuschimi resheniyami”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 34, ed. R. V. Gamkrelidze, VINITI, M., 1988, 5–56 | MR

[2] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1989 | MR

[3] R. A. Sharipov, A note on Newtonian, Lagrangian, and Hamiltonian dynamical systems in Riemannian manifolds, E-print math.DG/0107212

[4] R. A. Sharipov, Dinamicheskie sistemy, dopuskayuschie normalnyi sdvig, Diss. ...dokt. f.-m. n., Gotovitsya k zaschite

[5] R. A. Sharipov, Matem. sb., 2001, no. 6, 105–144 ; E-print math.DG/0006125 | DOI | MR | Zbl

[6] A. Yu. Boldin, R. A. Sharipov, Dynamical systems accepting the normal shift, Preprint No 0001-M, April 1993, Bashkir State University, Ufa | MR

[7] A. Yu. Boldin, R. A. Sharipov, TMF, 97:3 (1993), 386–395 | MR | Zbl

[8] A. Yu. Boldin, R. A. Sharipov, TMF, 100:2 (1994), 264–269 | MR | Zbl

[9] A. Yu. Boldin, R. A. Sharipov, Dokl. RAN, 334:2 (1994), 165–167 | Zbl

[10] R. A. Sharipov, TMF, 101:1 (1994), 85–93 | MR | Zbl

[11] A. Yu. Boldin, V. V. Dmitrieva, S. S. Safin, R. A. Sharipov, TMF, 103:2 (1995), 256–266 | MR | Zbl

[12] A. Yu. Boldin, A. A. Bronnikov, V. V. Dmitrieva, R. A. Sharipov, TMF, 103:2 (1995), 267–275 | MR | Zbl

[13] A. Yu. Boldin, “On the self-similar solutions of normality equation in two-dimensional case”, Dynamical systems accepting the normal shift, ed. R. A. Sharipov, Bash.GU, Ufa, 1994, 31–39 ; E-print patt-sol/9407002 | MR

[14] R. A. Sharipov, TMF, 103:2 (1995), 276–282 | MR | Zbl

[15] R. A. Sharipov, UMN, 49:4 (1994), 105

[16] R. A. Sharipov, “Higher dynamical systems accepting the normal shift”, Dynamical systems accepting the normal shift, ed. R. A. Sharipov, Bash.GU, Ufa, 1994, 41–65

[17] V. V. Dmitrieva, “Ob ekvivalentnosti dvukh form zapisi uravnenii normalnosti dlya dinamicheskikh sistem $\mathbb R^n$”, Integriruemost v dinamicheskikh sistemakh, ed. L. A. Kalyakin, Inst. Matematiki BNTs UrO RAN, Ufa, 1994, 5–16 | MR | Zbl

[18] A. A. Bronnikov, R. A. Sharipov, “Axially symmetric dynamical systems accepting the normal shift in $\mathbb R^n$”, Integriruemost v dinamicheskikh sistemakh, ed. L. A. Kalyakin, Inst. Matematiki BNTs UrO RAN, Ufa, 1994, 62–69 | MR | Zbl

[19] A. Yu. Boldin, R. A. Sharipov, Algebra i analiz, 10:4 (1998), 37–61 | MR | Zbl

[20] A. Yu. Boldin, Dvumernye dinamicheskie sistemy, dopuskayuschie normalnyi sdvig, Diss. ...kand. f.-m. n., Gotovitsya k zaschite

[21] V. I. Arnold, Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996 | MR | Zbl

[22] L. Mangiarotti, G. Sardanashvily, Gauge Mechanics, World Scientific, Singapore, 1998 | MR