The Kramers--Wannier Symmetry and $S$-Duality in the Two-Dimensional $g\Phi ^4$ Theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 2, pp. 206-215
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that the exact beta function of the two-dimensional $g\Phi ^4$ theory possesses two dual symmetries. These are the Kramers–Wannier symmetry $d(g)$ and the strong-weak-coupling symmetry, or the $S$-duality $f(g)$, connecting the strong- and weak-coupling domains lying above and below the fixed point $g^*$. We obtain explicit representations for the functions $d(g)$ and $f(g)$. The $S$-duality transformation $f(g)$ allows using the high-temperature expansions to approximate the contributions of the higher-order Feynman diagrams. From the mathematical standpoint, the proposed scheme is highly unstable. Nevertheless, the approximate values of the renormalized coupling constant $g^*$ obtained from the duality equations agree well with the available numerical results.
@article{TMF_2002_131_2_a3,
author = {B. N. Shalaev},
title = {The {Kramers--Wannier} {Symmetry} and $S${-Duality} in the {Two-Dimensional} $g\Phi ^4$ {Theory}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {206--215},
publisher = {mathdoc},
volume = {131},
number = {2},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_131_2_a3/}
}
TY - JOUR AU - B. N. Shalaev TI - The Kramers--Wannier Symmetry and $S$-Duality in the Two-Dimensional $g\Phi ^4$ Theory JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2002 SP - 206 EP - 215 VL - 131 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2002_131_2_a3/ LA - ru ID - TMF_2002_131_2_a3 ER -
B. N. Shalaev. The Kramers--Wannier Symmetry and $S$-Duality in the Two-Dimensional $g\Phi ^4$ Theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 2, pp. 206-215. http://geodesic.mathdoc.fr/item/TMF_2002_131_2_a3/