The Asymptotic Form of the Lower Landau Bands in a Strong Magnetic Field
Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 2, pp. 304-331 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic form of the bottom part of the spectrum of the two-dimensional magnetic Schrödinger operator with a periodic potential in a strong magnetic field is studied in the semiclassical approximation. Averaging methods permit reducing the corresponding classical problem to a one-dimensional problem on the torus; we thus show the almost integrability of the original problem. Using elementary corollaries from the topological theory of Hamiltonian systems, we classify the almost invariant manifolds of the classical Hamiltonian. The manifolds corresponding to the bottom part of the spectrum are closed or nonclosed curves and points. Their geometric and topological characteristics determine the asymptotic form of parts of the spectrum (spectral series). We construct this asymptotic form using the methods of the semiclassical approximation with complex phases. We discuss the relation of the asymptotic form obtained to the magneto-Bloch conditions and asymptotics of the band spectrum.
@article{TMF_2002_131_2_a10,
     author = {J. Br\"uning and S. Yu. Dobrokhotov and K. V. Pankrashin},
     title = {The {Asymptotic} {Form} of the {Lower} {Landau} {Bands} in a {Strong} {Magnetic} {Field}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {304--331},
     year = {2002},
     volume = {131},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_131_2_a10/}
}
TY  - JOUR
AU  - J. Brüning
AU  - S. Yu. Dobrokhotov
AU  - K. V. Pankrashin
TI  - The Asymptotic Form of the Lower Landau Bands in a Strong Magnetic Field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 304
EP  - 331
VL  - 131
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_131_2_a10/
LA  - ru
ID  - TMF_2002_131_2_a10
ER  - 
%0 Journal Article
%A J. Brüning
%A S. Yu. Dobrokhotov
%A K. V. Pankrashin
%T The Asymptotic Form of the Lower Landau Bands in a Strong Magnetic Field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 304-331
%V 131
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2002_131_2_a10/
%G ru
%F TMF_2002_131_2_a10
J. Brüning; S. Yu. Dobrokhotov; K. V. Pankrashin. The Asymptotic Form of the Lower Landau Bands in a Strong Magnetic Field. Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 2, pp. 304-331. http://geodesic.mathdoc.fr/item/TMF_2002_131_2_a10/

[1] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika, Fizmatgiz, M., 1963

[2] D. Weiss, K. von Klitzing, K. Ploog, G. Weimann, Europhys Lett., 8 (1989), 179 ; R. R. Gerhardts, D. Weiss, U. Wulf, Phys. Rev. B, 43:6 (1991), 5192 ; V. Gudmundsson, R. R. Gerharts, Phys. Rev. B, 24:8 (1996), 5223 ; U. Kuhl, H.-J. Stöckmann, Phys. Rev. Lett., 80:15 (1998), 3232 | DOI | DOI | DOI | DOI

[3] S. P. Novikov, A. Ya. Maltsev, UFN, 168:3 (1998), 249 | DOI

[4] M. Ya. Azbel, ZhETF, 46 (1964), 929; B. Helffer, J. Sjöstrand, “Equation de Schrödinger avec champ magnetique et equation de Harper”, Schrödinger Operators (Sonderborg, 1988), Lect. Notes Phys., 345, eds. H. Holden, A. Jensen, Springer, Berlin, 1989, 118 | DOI | MR

[5] E. I. Dinaburg, Ya. G. Sinai, A. B. Soshnikov, Commun. Math. Phys., 189 (1997), 559 | DOI | MR | Zbl

[6] S. P. Novikov, “Dvumernye operatory Shredingera v periodicheskikh polyakh”, Itogi nauki i tekhniki. Sovr. probl. matem., 23, ed. R. V. Gamkrelidze, VINITI, M., 1983, 3 | MR

[7] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[8] A. V. Bolsinov, A. T. Fomenko, Vvedenie v topologiyu integriruemykh gamiltonovykh sistem, Nauka, M., 1997 | MR

[9] I. Bryuning, S. Yu. Dobrokhotov, DAN, 379:3 (2001), 313 | MR

[10] J. Brüning, S. Yu. Dobrokhotov, K. V. Pankrashkin, Russ. J. Math. Phys., 9 (2002) (to appear) | MR

[11] T. Ando, A. Fauler, F. Shtern, Elektronnye svoistva dvumernykh sistem, Mir, M., 1985

[12] I. M. Gelfand, DAN SSSR, 76:6 (1950), 1117; J. Zak, Solid State Phys., 27 (1972), 1 ; Е. М. Лифшиц, Л. П. Питаевский, Статистическая физика, Часть 2. § 55, Наука, М., 1978 | DOI

[13] J. Zak, Phys. Rev., 134 (1964), A1602 | DOI | MR

[14] W. Opechowski, W. G. Tam, Physica, 42 (1969), 529 ; Е. Д. Белоколос, ТМФ, 7:1 (1971), 61 | DOI | MR | MR

[15] R. G. Littlejohn, Hamilton Theory of Guiding Center Motion, Lawrence Berkeley Lab, Berkeley, 1980

[16] N. N. Bogolyubov, D. N. Zubarev, Ukr. Matem. Zhurn., 7:1 (1955), 5 ; Ю. В. Новожилов, Ю. П. Яппа, Электродинамика, Наука, М., 1978; H. van Alfven, G. Fälthammer, Cosmical electrodynamics: Fundamental Principles, Clarendon Press, Oxford, 1963 | MR | Zbl | MR

[17] I. Bryuning, S. Yu. Dobrokhotov, M. A. Poteryakhin, Matem. zametki, 70:5 (2001), 660 ; V. Gelfreich, L. Lerman, Almost invariant elliptic manifolds in a singularly perturbed Hamiltonian system, E-print mp-arc/01-134 | DOI | MR

[18] A. I. Neishtadt, Prikl. Mat. Mekh., 48:2 (1984), 197 | MR

[19] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[20] F. Faure, J. Phys. A, 33 (2000), 531 | DOI | MR | Zbl

[21] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR

[22] V. V. Belov, S. Yu. Dobrokhotov, TMF, 92:2 (1992), 215 | MR

[23] S. Yu. Dobrokhotov, V. Martines-Olive, Trudy Mosk. Matem. Obsch., 58, 1997, 4 | MR

[24] V. V. Belov, O. S. Dobrokhotov, S. Yu. Dobrokhotov, Matem. zametki, 69:4 (2001), 483 | DOI | MR | Zbl

[25] D. Langbein, Phys. Rev. (2), 180 (1969), 633 | DOI

[26] J. Zak, Phys. Rev. Lett., 67 (1991), 2565 | DOI

[27] V. A. Geyler, I. Yu. Popov, Phys. Lett. A, 201:4 (1995), 359 | DOI | MR | Zbl

[28] D. Hofstadter, Phys. Rev. B, 14 (1976), 2239 | DOI