Derivatives of Generalized Gegenbauer Polynomials
Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 2, pp. 194-196 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove some new formulas for the derivatives of the generalized Gegenbauer polynomials associated with the Lie algebra $A_2$.
@article{TMF_2002_131_2_a1,
     author = {W. Garcia Fuertes and A. M. Perelomov},
     title = {Derivatives of {Generalized} {Gegenbauer} {Polynomials}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {194--196},
     year = {2002},
     volume = {131},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_131_2_a1/}
}
TY  - JOUR
AU  - W. Garcia Fuertes
AU  - A. M. Perelomov
TI  - Derivatives of Generalized Gegenbauer Polynomials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 194
EP  - 196
VL  - 131
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_131_2_a1/
LA  - ru
ID  - TMF_2002_131_2_a1
ER  - 
%0 Journal Article
%A W. Garcia Fuertes
%A A. M. Perelomov
%T Derivatives of Generalized Gegenbauer Polynomials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 194-196
%V 131
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2002_131_2_a1/
%G ru
%F TMF_2002_131_2_a1
W. Garcia Fuertes; A. M. Perelomov. Derivatives of Generalized Gegenbauer Polynomials. Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 2, pp. 194-196. http://geodesic.mathdoc.fr/item/TMF_2002_131_2_a1/

[1] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, T. 2, Nauka, M., 1974 | MR

[2] F. Calogero, J. Math. Phys., 12 (1971), 419–436 | DOI | MR

[3] B. Sutherland, Phys. Rev. A, 4 (1972), 2019–2021 | DOI

[4] M. A. Olshanetsky, A. M. Perelomov, Phys. Rep., 94 (1983), 313–404 | DOI | MR

[5] A. M. Perelomov, J. Phys. A, 31 (1998), L31–L37 | DOI | MR | Zbl

[6] A. M. Perelomov, E. Ragoucy, Ph. Zaugg, J. Phys. A, 31 (1998), L559–L565 | DOI | MR | Zbl

[7] A. M. Perelomov, J. Phys. A, 32 (1999), 8563–8576 | DOI | MR | Zbl

[8] A. M. Perelomov, “Quantum integrable systems and special functions”, Lie Theory and Its Applications in Physics-III, Proc. Clausthal Conference (1999), eds. H.-D. Doebner, V. K. Dobrev, J. Hilgert, World Scientific, Singapore, 2000, 139–154 | MR | Zbl

[9] H. Jack, Proc. Roy. Soc. Edinb. A, 69 (1970), 1–18 | MR | Zbl