Derivatives of Generalized Gegenbauer Polynomials
Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 2, pp. 194-196

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove some new formulas for the derivatives of the generalized Gegenbauer polynomials associated with the Lie algebra $A_2$.
@article{TMF_2002_131_2_a1,
     author = {W. Garcia Fuertes and A. M. Perelomov},
     title = {Derivatives of {Generalized} {Gegenbauer} {Polynomials}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {194--196},
     publisher = {mathdoc},
     volume = {131},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_131_2_a1/}
}
TY  - JOUR
AU  - W. Garcia Fuertes
AU  - A. M. Perelomov
TI  - Derivatives of Generalized Gegenbauer Polynomials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 194
EP  - 196
VL  - 131
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_131_2_a1/
LA  - ru
ID  - TMF_2002_131_2_a1
ER  - 
%0 Journal Article
%A W. Garcia Fuertes
%A A. M. Perelomov
%T Derivatives of Generalized Gegenbauer Polynomials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 194-196
%V 131
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2002_131_2_a1/
%G ru
%F TMF_2002_131_2_a1
W. Garcia Fuertes; A. M. Perelomov. Derivatives of Generalized Gegenbauer Polynomials. Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 2, pp. 194-196. http://geodesic.mathdoc.fr/item/TMF_2002_131_2_a1/