Solutions of Discrete-Velocity Boltzmann Equations via Bateman and Riccati Equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 2, pp. 179-193
Voir la notice de l'article provenant de la source Math-Net.Ru
We propose several approaches for solving two discrete-velocity Boltzmann equations using the rescaling ansatz and the truncated Painlev'e expansions. We use solutions of the two- and three-dimensional Bateman equations for the singularity manifold conditions to reduce the problem to Riccati equations. Both equations fail the Painlevé test.
@article{TMF_2002_131_2_a0,
author = {O. Lindblom and N. Euler},
title = {Solutions of {Discrete-Velocity} {Boltzmann} {Equations} via {Bateman} and {Riccati} {Equations}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {179--193},
publisher = {mathdoc},
volume = {131},
number = {2},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_131_2_a0/}
}
TY - JOUR AU - O. Lindblom AU - N. Euler TI - Solutions of Discrete-Velocity Boltzmann Equations via Bateman and Riccati Equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2002 SP - 179 EP - 193 VL - 131 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2002_131_2_a0/ LA - ru ID - TMF_2002_131_2_a0 ER -
O. Lindblom; N. Euler. Solutions of Discrete-Velocity Boltzmann Equations via Bateman and Riccati Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 2, pp. 179-193. http://geodesic.mathdoc.fr/item/TMF_2002_131_2_a0/