Lax Pairs for the Deformed Kowalevski and Goryachev--Chaplygin Tops
Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 1, pp. 118-125
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a quadratic deformation of the Kowalevski top. This deformation includes a new integrable case for the Kirchhoff equations recently found by one of the authors as a degeneration. A $5\times 5$ matrix Lax pair for the deformed Kowalevski top is proposed. We also find similar deformations of the two-field Kowalevski gyrostat and the $so(p,q)$ Kowalevski top. All our Lax pairs are deformations of the corresponding Lax representations found by Reyman and Semenov–Tian-Shansky. A similar deformation of the Goryachev–Chaplygin top and its $3\times 3$ matrix Lax representation is also constructed.
@article{TMF_2002_131_1_a9,
author = {V. V. Sokolov and A. V. Tsiganov},
title = {Lax {Pairs} for the {Deformed} {Kowalevski} and {Goryachev--Chaplygin} {Tops}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {118--125},
publisher = {mathdoc},
volume = {131},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a9/}
}
TY - JOUR AU - V. V. Sokolov AU - A. V. Tsiganov TI - Lax Pairs for the Deformed Kowalevski and Goryachev--Chaplygin Tops JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2002 SP - 118 EP - 125 VL - 131 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a9/ LA - ru ID - TMF_2002_131_1_a9 ER -
V. V. Sokolov; A. V. Tsiganov. Lax Pairs for the Deformed Kowalevski and Goryachev--Chaplygin Tops. Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 1, pp. 118-125. http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a9/