Lax Pairs for the Deformed Kowalevski and Goryachev–Chaplygin Tops
Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 1, pp. 118-125
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a quadratic deformation of the Kowalevski top. This deformation includes a new integrable case for the Kirchhoff equations recently found by one of the authors as a degeneration. A $5\times 5$ matrix Lax pair for the deformed Kowalevski top is proposed. We also find similar deformations of the two-field Kowalevski gyrostat and the $so(p,q)$ Kowalevski top. All our Lax pairs are deformations of the corresponding Lax representations found by Reyman and Semenov–Tian-Shansky. A similar deformation of the Goryachev–Chaplygin top and its $3\times 3$ matrix Lax representation is also constructed.
@article{TMF_2002_131_1_a9,
author = {V. V. Sokolov and A. V. Tsiganov},
title = {Lax {Pairs} for the {Deformed} {Kowalevski} and {Goryachev{\textendash}Chaplygin} {Tops}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {118--125},
year = {2002},
volume = {131},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a9/}
}
V. V. Sokolov; A. V. Tsiganov. Lax Pairs for the Deformed Kowalevski and Goryachev–Chaplygin Tops. Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 1, pp. 118-125. http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a9/
[1] V. V. Sokolov, “A generalized Kowalevski Hamiltonian and new integrable cases on $e(3)$ and $so(4)$”, Kowalevski property, ed. V. B. Kuznetsov, 2002 ; CRM Proceedings and Lecture Notes, AMS (to appear); E-print nlin.SI/0110022 | MR
[2] V. V. Sokolov, TMF, 129:1 (2001), 31 | DOI | MR | Zbl
[3] A. I. Bobenko, A. G. Reyman, M. A. Semenov-Tian-Shansky, Commun. Math. Phys., 122 (1989), 321 | DOI | MR | Zbl
[4] D. Markushevich, J. Phys. A, 34 (2001), 2125 | DOI | MR | Zbl
[5] A. I. Bobenko, V. B. Kuznetsov, J. Phys. A, 21 (1988), 1999 | DOI | MR | Zbl