Color Skyrmion in the Vacuum Field: Asymptotic Behavior, Stability, and the Possibility of Confinement
Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 1, pp. 62-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a model of the color skyrmion in the vacuum field in the framework of the color group $SU(3)$ and one flavor in the four-dimensional space. We obtain the static mass functional and variational equations, determine the asymptotic behavior, and evaluate the interskyrmion potential for the case of the spherically symmetric skyrmion configuration.
@article{TMF_2002_131_1_a5,
     author = {V. Yu. Novozhilov and Yu. V. Novozhilov},
     title = {Color {Skyrmion} in the {Vacuum} {Field:} {Asymptotic} {Behavior,} {Stability,} and the {Possibility} of {Confinement}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {62--71},
     year = {2002},
     volume = {131},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a5/}
}
TY  - JOUR
AU  - V. Yu. Novozhilov
AU  - Yu. V. Novozhilov
TI  - Color Skyrmion in the Vacuum Field: Asymptotic Behavior, Stability, and the Possibility of Confinement
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 62
EP  - 71
VL  - 131
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a5/
LA  - ru
ID  - TMF_2002_131_1_a5
ER  - 
%0 Journal Article
%A V. Yu. Novozhilov
%A Yu. V. Novozhilov
%T Color Skyrmion in the Vacuum Field: Asymptotic Behavior, Stability, and the Possibility of Confinement
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 62-71
%V 131
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a5/
%G ru
%F TMF_2002_131_1_a5
V. Yu. Novozhilov; Yu. V. Novozhilov. Color Skyrmion in the Vacuum Field: Asymptotic Behavior, Stability, and the Possibility of Confinement. Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 1, pp. 62-71. http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a5/

[1] T. H. R. Skyrme, Proc. Roy. Soc. London A, 260 (1961), 127 | DOI | MR | Zbl

[2] A. P. Balachandran, V. P. Nair, S. G. Rajeev, A. Stern, Phys. Rev. D, 27 (1983), 1152 ; 2772

[3] E. Witten, Nucl. Phys. B, 223 (1983), 422 ; 433 | DOI | MR | MR

[4] L. D. Faddeev, Lett. Math. Phys., 1 (1976), 289 | DOI | MR

[5] L. D. Faddeev, A. J. Niemi, Nature, 387 (1997), 58 ; Phys. Lett. B, 449 (1999), 214 ; 464, 90 | DOI | DOI | MR | Zbl | DOI | MR | Zbl

[6] A. Andrianov, Phys. Lett. B, 157 (1985), 425 | DOI | MR

[7] N. I. Karchev, A. A. Slavnov, TMF, 65 (1985), 192

[8] A. A. Andrianov, V. A. Andrianov, V. Yu. Novozhilov, Yu. V. Novozhilov, Lett. Math. Phys., 11 (1986), 217 | DOI | MR

[9] A. A. Andrianov, V. A. Andrianov, V. Yu. Novozhilov, Yu. V. Novozhilov, TMF, 70 (1987), 63

[10] R. D. Ball, Int. J. Mod. Phys. A, 5 (1990), 4391 | DOI

[11] A. A. Andrianov, Yu. V. Novozhilov, Phys. Lett. B, 153 (1985), 422 | DOI | MR

[12] V. A. Andrianov, V. Yu. Novozhilov, YaF, 43 (1986), 983

[13] D. B. Kaplan, Phys. Lett. B, 235 (1990), 163 ; Nucl. Phys. B, 351 (1991), 357 | DOI | DOI

[14] G. Gomelski, M. Karliner, S. B. Selipsky, Phys. Lett. B, 323 (1994), 182 | DOI

[15] J. Ellis, Y. Frishman, A. Hanany, M. Karliner, Nucl. Phys. B, 382 (1992), 189 | DOI

[16] Y. Frishman, A. Hanany, M. Karliner, Nucl. Phys. B, 424 (1994), 3 ; On the stability of quark solitons in QCD, E-print hep-ph/9507206 | DOI | MR

[17] V. Novozhilov, Yu. Novozhilov, Phys. Lett. B, 522 (2001), 49 | DOI | Zbl