Method of Local Peak Functions for Reconstructing the Original Profile in the Fourier Transformation
Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 1, pp. 15-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a method for reconstructing the original profile function in the one-dimensional Fourier transformation from the module of the Fourier transform function analytically. The major concept of the method consists in representing the modeling profile function as a sum of local peak functions. The latter are chosen as eigenfunctions generated by linear differential equations with polynomial coefficients. This allows directly inverting the Fourier transformation without numerical integration. The solution of the inverse problem thus reduces to a nonlinear regression with a small number of optimizing parameters and to a numerical or asymptotic study of the corresponding modeling peak functions taken as the eigenfunctions of the differential equations and their Fourier transforms.
@article{TMF_2002_131_1_a2,
     author = {X. Dosch and S. Yu. Slavyanov},
     title = {Method of {Local} {Peak} {Functions} for {Reconstructing} the {Original} {Profile} in the {Fourier} {Transformation}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {15--25},
     year = {2002},
     volume = {131},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a2/}
}
TY  - JOUR
AU  - X. Dosch
AU  - S. Yu. Slavyanov
TI  - Method of Local Peak Functions for Reconstructing the Original Profile in the Fourier Transformation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 15
EP  - 25
VL  - 131
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a2/
LA  - ru
ID  - TMF_2002_131_1_a2
ER  - 
%0 Journal Article
%A X. Dosch
%A S. Yu. Slavyanov
%T Method of Local Peak Functions for Reconstructing the Original Profile in the Fourier Transformation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 15-25
%V 131
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a2/
%G ru
%F TMF_2002_131_1_a2
X. Dosch; S. Yu. Slavyanov. Method of Local Peak Functions for Reconstructing the Original Profile in the Fourier Transformation. Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 1, pp. 15-25. http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a2/

[1] S. Slavyanov, C. Ern, H. Dosch, “Rigorous mathematical models for the reconstruction of thin films profiles from X-ray intensities”, Proc. of the Conference “Day on Diffraction 2000”, ed. I. V. Andronov, St.-Petersburg, 2000, 161–167

[2] S. Slavyanov, H. Dosch, “Analytical modelling of X-ray scattering intensities from thin films”, J. Appl. Cryst., Submitted | Zbl

[3] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, T. 2, Mir, M., 1978 | MR

[4] C. Ern, W. Donner, H. Dosch, B. Adams, D. Nowikow, Phys. Rev. Lett., 85 (2000), 1926 | DOI

[5] S. Slavyanov, V. Lai, Spetsialnye funktsii: edinaya teoriya, osnovannaya na analize osobennostei, Nevskii dialekt, S.-Pb., 2001

[6] S. Slavyanov, Asimptotika reshenii odnomernogo uravneniya Shredingera, Izd-vo LGU, L., 1991 | MR

[7] H. M. Rietveld, J. Appl. Cryst., 2 (1969), 65 | DOI

[8] I. Samoilenko, L. Feigin, B. Shchedrin, R. Antolini, Physica B, 283 (2000), 262 | DOI