Stationary Solutions of the Fractional Kinetic Equation with a~Symmetric Power-Law Potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 1, pp. 162-176

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of stationary solutions of the one-dimensional fractional Einstein–Smoluchowski equation with a potential of the form $x^{2m+2}$, $m=1,2,\dots$, and of the Riesz spatial fractional derivative of order $\alpha$, $1\leq\alpha\leq2$ are studied analytically and numerically. We show that for $1\leq\alpha2$, the stationary distribution functions have power-law asymptotic approximations decreasing as $x^{-(\alpha+2m+1)}$ for large values of the argument. We also show that these distributions are bimodal.
@article{TMF_2002_131_1_a13,
     author = {V. Yu. Gonchar and L. V. Tanatarov and A. V. Chechkin},
     title = {Stationary {Solutions} of the {Fractional} {Kinetic} {Equation} with {a~Symmetric} {Power-Law} {Potential}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {162--176},
     publisher = {mathdoc},
     volume = {131},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a13/}
}
TY  - JOUR
AU  - V. Yu. Gonchar
AU  - L. V. Tanatarov
AU  - A. V. Chechkin
TI  - Stationary Solutions of the Fractional Kinetic Equation with a~Symmetric Power-Law Potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 162
EP  - 176
VL  - 131
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a13/
LA  - ru
ID  - TMF_2002_131_1_a13
ER  - 
%0 Journal Article
%A V. Yu. Gonchar
%A L. V. Tanatarov
%A A. V. Chechkin
%T Stationary Solutions of the Fractional Kinetic Equation with a~Symmetric Power-Law Potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 162-176
%V 131
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a13/
%G ru
%F TMF_2002_131_1_a13
V. Yu. Gonchar; L. V. Tanatarov; A. V. Chechkin. Stationary Solutions of the Fractional Kinetic Equation with a~Symmetric Power-Law Potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 1, pp. 162-176. http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a13/