Summing Superdaisy Diagrams in the $O(N)$-Model near the Phase Transition Temperature
Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 1, pp. 4-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the phase transition temperature in the $N$-component scalar field theory. We obtain a weakly first-order phase transition in the superdaisy approximation; it becomes a second-order phase transition as $N\to\infty$. This is compared with other approaches.
@article{TMF_2002_131_1_a1,
     author = {M. Bordag and V. V. Skalozub},
     title = {Summing {Superdaisy} {Diagrams} in the $O(N)${-Model} near the {Phase} {Transition} {Temperature}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {4--14},
     year = {2002},
     volume = {131},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a1/}
}
TY  - JOUR
AU  - M. Bordag
AU  - V. V. Skalozub
TI  - Summing Superdaisy Diagrams in the $O(N)$-Model near the Phase Transition Temperature
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 4
EP  - 14
VL  - 131
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a1/
LA  - ru
ID  - TMF_2002_131_1_a1
ER  - 
%0 Journal Article
%A M. Bordag
%A V. V. Skalozub
%T Summing Superdaisy Diagrams in the $O(N)$-Model near the Phase Transition Temperature
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 4-14
%V 131
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a1/
%G ru
%F TMF_2002_131_1_a1
M. Bordag; V. V. Skalozub. Summing Superdaisy Diagrams in the $O(N)$-Model near the Phase Transition Temperature. Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 1, pp. 4-14. http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a1/

[1] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press, Oxford, 1996 | MR

[2] L. Dolan, R. Jackiw, Phys. Rev. D, 9 (1974), 3320–3341 | DOI

[3] P. Arnold, O. Espinosa, Phys. Rev. D, 47 (1993), 3546–3579 | DOI

[4] M. E. Carrington, Phys. Rev. D, 45 (1992), 2933–2944 | DOI

[5] J. R. Espinosa, M. Quiros, F. Zwirner, Phys. Lett. B, 291 (1992), 115–124 | DOI

[6] N. Tetradis, C. Wetterich, Nucl. Phys. B, 398 (1993), 659–696 | DOI

[7] M. Reuter, N. Tetradis, C. Wetterich, Nucl. Phys. B, 401 (1993), 567–590 | DOI

[8] J. Adams et al, Mod. Phys. Lett. A, 10 (1995), 2367–2380 | DOI

[9] I. Montvay, G. Muenster, Quantum Fields on a Lattice, Cambridge monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, 1994 | MR

[10] Z. Fodor, J. Hein, K. Jansen, A. Jaster, I. Montvay, Nucl. Phys. B, 439 (1995), 147–186 | DOI

[11] K. Takahashi, Z. Phys. C, 26 (1985), 601–613 | DOI

[12] P. Arnold, Phys. Rev. D, 46 (1992), 2628–2635 | DOI

[13] K. Ogure, J. Sato, Phys. Rev. D, 57 (1998), 7460–7466 | DOI

[14] K. Ogure, J. Sato, Phys. Rev. D, 58 (1998), 085010 | DOI

[15] M. Bordag, V. Skalozub, J. Phys. A, 34 (2001), 461–471 | DOI | MR | Zbl

[16] J. M. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev. D, 8 (1974), 2428–2445 | DOI | Zbl

[17] P. Elmfors, Z. Phys. C, 56 (1992), 601–608 | DOI

[18] S. Mallik, Krishnendu Mukherjee, Absence of a second order phase transition in $\lambda\phi^4$ theory, E-print hep-th/9607087

[19] P. Ginsparg, Nucl. Phys. B, 170(FS1) (1980), 388–408 | DOI | MR