A Representation of Virial Coefficients That Avoids the Asymptotic Catastrophe
Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 3, pp. 508-528 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the notion of an asymptotic catastrophe in representations of Mayer coefficients. The manifestations of the catastrophe and its formal definition are given. The significance of the definition introduced for an asymptotic catastrophe is clarified. Virial-coefficient representations that are free of the asymptotic catastrophe phenomenon are given. Sets of labeled graphs (blocks) nonseparable in the Harary sense are expanded into classes labeled by cycle ensembles satisfying specific conditions, and the representations are based on these expansions. These cycle ensembles are called frame cycle ensembles. The same classes can be labeled by special blocks, which are called frames. The frames are brought into one-to-one correspondence with the frame cycle ensembles. In the block classification, frames play a role similar to the role of trees in the tree classification of connected labeled graphs. A tree classification of frame cycle ensembles is introduced. We prove that the described virial-coefficient representations are free of the asymptotic catastrophe phenomenon.
@article{TMF_2002_130_3_a9,
     author = {G. I. Kalmykov},
     title = {A~Representation of {Virial} {Coefficients} {That} {Avoids} the {Asymptotic} {Catastrophe}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {508--528},
     year = {2002},
     volume = {130},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a9/}
}
TY  - JOUR
AU  - G. I. Kalmykov
TI  - A Representation of Virial Coefficients That Avoids the Asymptotic Catastrophe
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 508
EP  - 528
VL  - 130
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a9/
LA  - ru
ID  - TMF_2002_130_3_a9
ER  - 
%0 Journal Article
%A G. I. Kalmykov
%T A Representation of Virial Coefficients That Avoids the Asymptotic Catastrophe
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 508-528
%V 130
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a9/
%G ru
%F TMF_2002_130_3_a9
G. I. Kalmykov. A Representation of Virial Coefficients That Avoids the Asymptotic Catastrophe. Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 3, pp. 508-528. http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a9/

[1] Dzh. Maier, M. Geppert-Maier, Statisticheskaya mekhanika, Mir, M., 1980

[2] D. Ryuel, Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1971

[3] F. Kharari, Teoriya grafov, Mir, M., 1973 | MR

[4] I. I. Ivanchik, Metod kovariantnogo summirovaniya diagramm v klassicheskoi statistike, Diss. ...dokt. f.-m.n., FIAN SSSR, M., 1987; I. I. Ivanchik, Generalized Mayer Series in Classical Statistical Mechanics, Nova Science Publishers, New York, 1993

[5] I. I. Ivanchik, TMF, 108:1 (1996), 135 | DOI | MR | Zbl

[6] G. I. Kalmykov, TMF, 119:3 (1999), 475 | DOI | MR | Zbl

[7] O. Penrose, J. Math. Phys., 4:12 (1963), 1488 | DOI | MR

[8] Dzh. Ulenbek, Dzh. Ford, Lektsii po statisticheskoi mekhanike, Mir, M., 1965

[9] D. N. Zubarev, DAN SSSR, 118:5 (1958), 903 | Zbl

[10] M. Dyuno, B. Suiar, “Klasternye svoistva reshetchatykh i nepreryvnykh sistem”, Gibbsovskie sostoyaniya v statisticheskoi fizike, ed. R. A. Minlos, Mir, M., 1978, 89

[11] M. Dyuno, B. Suiar, D. Yagolnittser, “Ubyvanie korrelyatsii v sistemakh s beskonechnym radiusom vzaimodeistviya”, Gibbsovskie sostoyaniya v statisticheskoi fizike, ed. R. A. Minlos, Mir, M., 1978, 107 | MR

[12] E. A. Arinshtein, DAN SSSR, 112:4 (1957), 615 | MR | Zbl

[13] E. A. Arinshtein, DAN SSSR, 114:6 (1957), 1189 | MR | Zbl

[14] T. Morita, Progr. Theor. Phys., 20:6 (1958), 920 | DOI | MR | Zbl

[15] J. M. J. Van Leeuwen, J. Groeneveld, J. De Boer, Physica, 25:9 (1959), 742 | MR

[16] T. Morita, Progr. Theor. Phys., 23:1 (1960), 175 | DOI | MR

[17] T. Morita, Progr. Theor. Phys., 23:5 (1960), 829 | DOI | MR | Zbl

[18] T. Morita, K. Hiroike, Progr. Theor. Phys., 23:6 (1960), 1003 | DOI | MR | Zbl

[19] E. A. Arinshtein, B. G. Abrosimov, Zhurn. strukturnoi khimii, 9:6 (1968), 1064

[20] G. A. Martynov, DAN SSSR, 218:4 (1974), 814

[21] G. A. Martynov, TMF, 22:1 (1975), 85

[22] A. N. Vasilev, Funktsionalnye metody v kvantovoi teorii polya i statistike, Izd-vo LGU, L., 1976

[23] I. I. Ivanchik, Tr. FIAN, 124, 1980, 14 | MR

[24] G. A. Martynov, Mol. Phys., 42:2 (1981), 329 | DOI | MR

[25] I. I. Ivanchik, Tr. FIAN, 144, 1984, 152 | MR

[26] I. I. Ivanchik, DAN SSSR, 296:2 (1987), 341 | MR

[27] I. I. Ivanchik, DAN SSSR, 300:3 (1988), 596

[28] G. I. Kalmykov, TMF, 84:2 (1990), 279 | MR

[29] G. I. Kalmykov, Metod drevesnykh summ i ego prilozhenie k resheniyu matematicheskikh problem klassicheskoi statisticheskoi mekhaniki, Diss. ...dokt. f.-m.n., VTs RAN, M., 1998

[30] J. Groeneveld, Phys. Lett., 3:1 (1962), 50 | DOI | MR | Zbl

[31] I. I. Ivanchik, “O bespovtornom perechislenii svyaznykh pomechennykh grafov”, Kombinatornyi analiz, no. 4, ed. K. A. Rybnikov, Izd-vo MGU, M., 1976, 78 | MR

[32] V. A. Malyshev, R. A. Minlos, Gibbsovskie sluchainye polya, Nauka, M., 1985 | MR

[33] I. I. Ivanchik, Tr. FIAN, 106, 1979, 3 | MR

[34] A. A. Sapozhenko, “O chisle svyaznykh podmnozhestv s zadannoi moschnostyu granitsy v dvudolnykh grafakh”, Metody diskretnogo analiza v reshenii kombinatornykh zadach, no. 45, ed. Yu. L. Vasilev, Institut matematiki SO RAN, Novosibirsk, 1987, 42 | MR

[35] G. I. Kalmykov, TMF, 97:3 (1993), 452 | MR | Zbl

[36] G. I. Kalmykov, TMF, 101:1 (1994), 94 | MR | Zbl

[37] G. I. Kalmykov, TMF, 92:1 (1992), 139 | MR

[38] G. I. Kalmykov, TMF, 100:1 (1994), 44 | MR

[39] G. I. Kalmykov, TMF, 116:3 (1998), 417 | DOI | MR | Zbl

[40] G. I. Kalmykov, “Karkasnaya klassifikatsiya grafov”, Trudy IV Mezhdunarodnoi konferentsii “Diskretnye modeli v teorii upravlyayuschikh sistem” (Krasnovidovo, 19–25 iyunya 2000 g.), eds. V. B. Alekseev, V. A. Zakharov, MAKS Press, M., 2000, 34

[41] G. I. Kalmykov, “Karkasnaya klassifikatsiya pomechennykh blokov”, Materialy VII mezhdunarodnogo seminara “Diskretnaya matematika i ee prilozheniya”, Ch. II (29 yanvarya – 2 fevralya 2001 g.), ed. O. B. Lupanov, Izd-vo Tsentra prikladnykh issledovanii pri mekhaniko-matematicheskom fakultete MGU, M., 2001, 221