$\mathbb {Z}$Existence of a Phase Transition for the Potts $p$-adic Model on the Set $\mathbb {Z}$
Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 3, pp. 500-507 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Potts model on the set $\mathbb {Z}$ in the field $Q_p$ of $p$-adic numbers. The range of the spin variables $\sigma (n)$, $n\in \mathbb Z$, in this model is $\Phi =\{\sigma _1,\sigma _2,\dots \dots ,\sigma _q\}\subset Q_p^{q-1}=\underbrace {Q_p\times Q_p\times \dots \times Q_p}_{q-1}$. We show that there are some values $q=q(p)$ for which phase transitions.
@article{TMF_2002_130_3_a8,
     author = {N. N. Ganikhodzhaev and F. M. Mukhamedov and U. A. Rozikov},
     title = {$\mathbb {Z}${Existence} of a {Phase} {Transition} for the {Potts} $p$-adic {Model} on the {Set} $\mathbb {Z}$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {500--507},
     year = {2002},
     volume = {130},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a8/}
}
TY  - JOUR
AU  - N. N. Ganikhodzhaev
AU  - F. M. Mukhamedov
AU  - U. A. Rozikov
TI  - $\mathbb {Z}$Existence of a Phase Transition for the Potts $p$-adic Model on the Set $\mathbb {Z}$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 500
EP  - 507
VL  - 130
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a8/
LA  - ru
ID  - TMF_2002_130_3_a8
ER  - 
%0 Journal Article
%A N. N. Ganikhodzhaev
%A F. M. Mukhamedov
%A U. A. Rozikov
%T $\mathbb {Z}$Existence of a Phase Transition for the Potts $p$-adic Model on the Set $\mathbb {Z}$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 500-507
%V 130
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a8/
%G ru
%F TMF_2002_130_3_a8
N. N. Ganikhodzhaev; F. M. Mukhamedov; U. A. Rozikov. $\mathbb {Z}$Existence of a Phase Transition for the Potts $p$-adic Model on the Set $\mathbb {Z}$. Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 3, pp. 500-507. http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a8/

[1] A. Yu. Khrennikov, TMF, 97:3 (1993), 348–364 | MR

[2] V. S. Vladimirov, UMN, 43:5(263) (1988), 17–53 | MR | Zbl

[3] V. S. Vladimirov, I. V. Volovich, Tr. MIAN, 200, 1991, 88–99 | Zbl

[4] I. V. Volovich, TMF, 71:3 (1987), 337–340 | MR | Zbl

[5] N. Koblits, $p$-Adicheskie chisla, $p$-adicheskii analiz i dzeta-funktsii, Mir, M., 1982 | MR

[6] D. Ryuel, Statisticheskaya mekhanika, Mir, M., 1971

[7] V. A. Malyshev, R. A. Minlos, Gibbsovskie sluchainye polya, Nauka, M., 1985 | MR

[8] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR

[9] N. N. Ganikhodzhaev, U. A. Rozikov, TMF, 111:1 (1997), 109–117 | DOI | MR | Zbl

[10] U. A. Rozikov, TMF, 112:1 (1997), 170–176 | DOI | MR

[11] U. A. Rozikov, Sib. matem. zhurn., 39:2 (1998), 427–435 | MR | Zbl

[12] U. A. Rozikov, TMF, 118:1 (1999), 95–104 | DOI | MR | Zbl

[13] N. N. Ganikhodzhaev, U. A. Rozikov, Matem. sb., 190:2 (1999), 31–42 | DOI | MR | Zbl

[14] N. N. Ganikhodjaev, U. A. Rozikov, Osaka J. Math., 37:2 (2000), 373–383 | MR