Exact Solution of the Ising Model on the Cayley Tree with Competing Ternary and Binary Interactions
Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 3, pp. 493-499
Cet article a éte moissonné depuis la source Math-Net.Ru
The exact solution is found for the problem of phase transitions in the Ising model with competing ternary and binary interactions. For the pair of parameters $\theta =\theta (J)$ and $\theta _1=\theta _1(J_1)$ in the plane $(\theta _1,\theta )$, we find two critical curves such that a phase transition occurs for all pairs $(\theta _1,\theta )$ lying between the curves.
@article{TMF_2002_130_3_a7,
author = {N. N. Ganikhodzhaev},
title = {Exact {Solution} of the {Ising} {Model} on the {Cayley} {Tree} with {Competing} {Ternary} and {Binary} {Interactions}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {493--499},
year = {2002},
volume = {130},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a7/}
}
TY - JOUR AU - N. N. Ganikhodzhaev TI - Exact Solution of the Ising Model on the Cayley Tree with Competing Ternary and Binary Interactions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2002 SP - 493 EP - 499 VL - 130 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a7/ LA - ru ID - TMF_2002_130_3_a7 ER -
N. N. Ganikhodzhaev. Exact Solution of the Ising Model on the Cayley Tree with Competing Ternary and Binary Interactions. Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 3, pp. 493-499. http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a7/
[1] M. Mariz, C. Tsallis, E. L. Albuquerque, J. Stat. Phys., 40 (1985), 577–592 | DOI | MR
[2] C. R. da Silca, S. Coutinho, Phys. Rev. B, 34 (1986), 7975–7985 | DOI
[3] J. L. Monree, J. Stat. Phys., 67 (1992), 1185–1200 | DOI | MR
[4] J. L. Monree, Phys. Lett. A, 188 (1994), 80–84 | DOI
[5] R. Kindermann, J. L. Snell, Markov Random Fields and their Applications, Contemporary Mathematics, 1, AMS, Providence, R.I., 1980 | DOI | MR | Zbl
[6] G. Korn, T. Korn, Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1968 | MR
[7] W. Weidlich, Br. J. Math. Statist. Psychol., 24:2 (1971), 251–266 | DOI | Zbl