Exact Solution of the Ising Model on the Cayley Tree with Competing Ternary and Binary Interactions
Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 3, pp. 493-499 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The exact solution is found for the problem of phase transitions in the Ising model with competing ternary and binary interactions. For the pair of parameters $\theta =\theta (J)$ and $\theta _1=\theta _1(J_1)$ in the plane $(\theta _1,\theta )$, we find two critical curves such that a phase transition occurs for all pairs $(\theta _1,\theta )$ lying between the curves.
@article{TMF_2002_130_3_a7,
     author = {N. N. Ganikhodzhaev},
     title = {Exact {Solution} of the {Ising} {Model} on the {Cayley} {Tree} with {Competing} {Ternary} and {Binary} {Interactions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {493--499},
     year = {2002},
     volume = {130},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a7/}
}
TY  - JOUR
AU  - N. N. Ganikhodzhaev
TI  - Exact Solution of the Ising Model on the Cayley Tree with Competing Ternary and Binary Interactions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 493
EP  - 499
VL  - 130
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a7/
LA  - ru
ID  - TMF_2002_130_3_a7
ER  - 
%0 Journal Article
%A N. N. Ganikhodzhaev
%T Exact Solution of the Ising Model on the Cayley Tree with Competing Ternary and Binary Interactions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 493-499
%V 130
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a7/
%G ru
%F TMF_2002_130_3_a7
N. N. Ganikhodzhaev. Exact Solution of the Ising Model on the Cayley Tree with Competing Ternary and Binary Interactions. Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 3, pp. 493-499. http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a7/

[1] M. Mariz, C. Tsallis, E. L. Albuquerque, J. Stat. Phys., 40 (1985), 577–592 | DOI | MR

[2] C. R. da Silca, S. Coutinho, Phys. Rev. B, 34 (1986), 7975–7985 | DOI

[3] J. L. Monree, J. Stat. Phys., 67 (1992), 1185–1200 | DOI | MR

[4] J. L. Monree, Phys. Lett. A, 188 (1994), 80–84 | DOI

[5] R. Kindermann, J. L. Snell, Markov Random Fields and their Applications, Contemporary Mathematics, 1, AMS, Providence, R.I., 1980 | DOI | MR | Zbl

[6] G. Korn, T. Korn, Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1968 | MR

[7] W. Weidlich, Br. J. Math. Statist. Psychol., 24:2 (1971), 251–266 | DOI | Zbl