Exact Solution of the Ising Model on the Cayley Tree with Competing Ternary and Binary Interactions
Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 3, pp. 493-499
Voir la notice de l'article provenant de la source Math-Net.Ru
The exact solution is found for the problem of phase transitions in the Ising model with competing ternary and binary interactions. For the pair of parameters $\theta =\theta (J)$ and $\theta _1=\theta _1(J_1)$ in the plane $(\theta _1,\theta )$, we find two critical curves such that a phase transition occurs for all pairs $(\theta _1,\theta )$ lying between the curves.
@article{TMF_2002_130_3_a7,
author = {N. N. Ganikhodzhaev},
title = {Exact {Solution} of the {Ising} {Model} on the {Cayley} {Tree} with {Competing} {Ternary} and {Binary} {Interactions}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {493--499},
publisher = {mathdoc},
volume = {130},
number = {3},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a7/}
}
TY - JOUR AU - N. N. Ganikhodzhaev TI - Exact Solution of the Ising Model on the Cayley Tree with Competing Ternary and Binary Interactions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2002 SP - 493 EP - 499 VL - 130 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a7/ LA - ru ID - TMF_2002_130_3_a7 ER -
%0 Journal Article %A N. N. Ganikhodzhaev %T Exact Solution of the Ising Model on the Cayley Tree with Competing Ternary and Binary Interactions %J Teoretičeskaâ i matematičeskaâ fizika %D 2002 %P 493-499 %V 130 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a7/ %G ru %F TMF_2002_130_3_a7
N. N. Ganikhodzhaev. Exact Solution of the Ising Model on the Cayley Tree with Competing Ternary and Binary Interactions. Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 3, pp. 493-499. http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a7/