Exact Solution of the Ising Model on the Cayley Tree with Competing Ternary and Binary Interactions
Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 3, pp. 493-499

Voir la notice de l'article provenant de la source Math-Net.Ru

The exact solution is found for the problem of phase transitions in the Ising model with competing ternary and binary interactions. For the pair of parameters $\theta =\theta (J)$ and $\theta _1=\theta _1(J_1)$ in the plane $(\theta _1,\theta )$, we find two critical curves such that a phase transition occurs for all pairs $(\theta _1,\theta )$ lying between the curves.
@article{TMF_2002_130_3_a7,
     author = {N. N. Ganikhodzhaev},
     title = {Exact {Solution} of the {Ising} {Model} on the {Cayley} {Tree} with {Competing} {Ternary} and {Binary} {Interactions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {493--499},
     publisher = {mathdoc},
     volume = {130},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a7/}
}
TY  - JOUR
AU  - N. N. Ganikhodzhaev
TI  - Exact Solution of the Ising Model on the Cayley Tree with Competing Ternary and Binary Interactions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 493
EP  - 499
VL  - 130
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a7/
LA  - ru
ID  - TMF_2002_130_3_a7
ER  - 
%0 Journal Article
%A N. N. Ganikhodzhaev
%T Exact Solution of the Ising Model on the Cayley Tree with Competing Ternary and Binary Interactions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 493-499
%V 130
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a7/
%G ru
%F TMF_2002_130_3_a7
N. N. Ganikhodzhaev. Exact Solution of the Ising Model on the Cayley Tree with Competing Ternary and Binary Interactions. Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 3, pp. 493-499. http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a7/