Semiclassical Trajectory-Coherent Approximations of Hartree-Type Equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 3, pp. 460-492
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the concept of the complex WKB–Maslov method to construct semiclassically concentrated solutions for Hartree-type equations. Formal solutions of the Cauchy problem for this equation that are asymptotic (with respect to a small parameter , $\hbar$, $\hbar \to 0$) are constructed with the power-law accuracy $O(\hbar ^{N/2})$, where $N\ge 3$ is a positive integer. The system of Hamilton–Ehrenfest equations (for averaged and centered moments) derived in this paper plays a significant role in constructing semiclassically concentrated solutions. In the class of semiclassically concentrated solutions of Hartree-type equations, we construct an approximate Green's function and state a nonlinear superposition principle.
@article{TMF_2002_130_3_a6,
     author = {V. V. Belov and A. Yu. Trifonov and A. V. Shapovalov},
     title = {Semiclassical {Trajectory-Coherent} {Approximations} of {Hartree-Type} {Equations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {460--492},
     year = {2002},
     volume = {130},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a6/}
}
TY  - JOUR
AU  - V. V. Belov
AU  - A. Yu. Trifonov
AU  - A. V. Shapovalov
TI  - Semiclassical Trajectory-Coherent Approximations of Hartree-Type Equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 460
EP  - 492
VL  - 130
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a6/
LA  - ru
ID  - TMF_2002_130_3_a6
ER  - 
%0 Journal Article
%A V. V. Belov
%A A. Yu. Trifonov
%A A. V. Shapovalov
%T Semiclassical Trajectory-Coherent Approximations of Hartree-Type Equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 460-492
%V 130
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a6/
%G ru
%F TMF_2002_130_3_a6
V. V. Belov; A. Yu. Trifonov; A. V. Shapovalov. Semiclassical Trajectory-Coherent Approximations of Hartree-Type Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 3, pp. 460-492. http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a6/

[1] M. V. Karasev, V. P. Maslov, Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR | Zbl

[2] S. R. de Groot, L. G. Sattorp, Elektrodinamika, Mir, M., 1982

[3] S. I. Pekar, Issledovaniya po elektronnoi teorii kristallov, Gostekhizdat, M., 1951

[4] P. Ring, P. Schuck, The Nuclear Many-Body Problem, Springer, New York, 1980 | MR

[5] J. Kurlandski, Bull. Acad. Pol. Sci., 30:3–4 (1982), 135

[6] V. M. Olkhov, TMF, 51:1 (1982), 150 | MR

[7] D. V. Chudnovsky, “Infinite component two-dimensional completely integrable systems of KdV type”, The Riemann Problem, Complete Integrability and Arithmetic Applications, Lect. Notes Math., 925, eds. D. Chudnovsky and G. Chudnovsky, Springer, Berlin, 1982, 71 | DOI | MR

[8] A. A. Bogolyubskaya, I. L. Bogolyubskii, TMF, 54:2 (1983), 258

[9] D. Gogny, P. L. Lions, J. Math. Phys., 27:1 (1986), 211 | DOI | MR

[10] D. R. Hartree, Proc. Cambridge Philos. Soc., 24 (1928), 89 ; 111 ; 426 | DOI | Zbl

[11] G. Efimov, Nelokalnoe vzaimodeistvie kvantovannykh polei, Nauka, M., 1977 | MR

[12] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, M., 1965 | MR

[13] A. S. Davydov, Solitony v molekulyarnykh sistemakh, Naukova Dumka, Kiev, 1984 | MR

[14] P. N. Brusov, V. N. Popov, Sverkhtekuchest i kollektivnye svoistva kvantovykh zhidkostei, Nauka, M., 1988

[15] Y. Lai, H. A. Haus, Phys. Rev. A, 40 (1989), 844 ; 854 | DOI | MR

[16] D. E. Fillips, M. D. Lukin, Phys. Rev. Lett., 86:5 (2001), 783 | DOI

[17] A. Zozulya, S. Diddams, T. Clement, Phys. Rev. A, 58:4 (1988), 72

[18] A. Bove, G. Da Prato, G. Fano, Commun. Math. Phys., 37 (1974), 183 | DOI | MR | Zbl

[19] J. M. Chadam, R. T. Glassey, J. Math. Phys., 16 (1975), 1122 | DOI | MR | Zbl

[20] R. T. Glassey, Commun. Math. Phys., 53:1 (1977), 9 | DOI | MR | Zbl

[21] V. Delgado, Proc. Amer. Math. Soc., 69:2 (1978), 289 | DOI | MR | Zbl

[22] I. Fukuda, M. Tsutsumi, J. Math. Anal. Appl., 66:2 (1978), 358 | DOI | MR | Zbl

[23] E. B. Davies, Ann. Inst. H. Poincare. A, 31:4 (1979), 319 | MR | Zbl

[24] J. Ginibre, G. Velo, Math. Z., 170:2 (1980), 109 | DOI | MR | Zbl

[25] Y. Choquet-Bruhat, C. R. Acad. Sci. Paris. Ser. 1, 292:2 (1981), 153 | MR | Zbl

[26] W. A. Strauss, J. Funct. Anal., 43:3 (1981), 281 | DOI | MR | Zbl

[27] G. P. Menzala, W. A. Strauss, Diff. Equat., 43:1 (1982), 93 | DOI | MR | Zbl

[28] K. Nakamitsu, M. Tsutsumi, J. Math. Phys., 27:1 (1986), 211 | DOI | MR | Zbl

[29] M. Reeken, J. Math. Phys., 11 (1970), 2505 | DOI | MR

[30] K. Gustafson, D. Sather, Rand. Math., 4 (1971), 723 | MR

[31] J. Wolkowsky, Indiana Univ. Math. J., 22 (1972), 551 | DOI | MR

[32] C. Stuart, Arch. Rat. Mech. Anal., 51 (1973), 60 | DOI | MR | Zbl

[33] G. Fonte, R. Mignani, G. Schiffrer, Comm. Math. Phys., 33 (1973), 293 | DOI | MR

[34] E. H. Lieb, B. Simon, Commun. Math. Phys., 53:3 (1977), 185 | DOI | MR

[35] E. H. Lieb, Stud. Appl. Math., 57 (1977), 93 | DOI | MR | Zbl

[36] P. Bader, Proc. Roy. Soc. Edinburgh. A, 82:1–2 (1978), 27 | DOI | MR | Zbl

[37] G. P. Menzala, “On a Hartree type equation: existence of regular solutions”, Functional Differential Equations and Bifurcations, Lect. Notes Math., 799, ed. A. F. Izé, Springer, Berlin, 1980, 277 | DOI | MR

[38] G. Rosensteel, E. Ihrig, J. Math. Phys., 21:8 (1980), 2297 | DOI | MR

[39] P. L. Lions, Nonlinear Anal.: Theory, Meth., Appl., 4:6 (1980), 1063 | DOI | MR | Zbl

[40] A. Bongers, Z. Angew. Math. Mech., 60:7 (1980), 240 | MR

[41] J. D. Gegenberg, A. J. Das, J. Math. Phys., 22:8 (1981), 1736 | DOI | MR | Zbl

[42] P. L. Lions, Nonlinear Anal.: Theory, Meth., Appl., 5:11 (1981), 1245 | DOI | MR | Zbl

[43] H. J. Efinger, H. Grosse, Lett. Math. Phys., 8:2 (1984), 91 | DOI | MR | Zbl

[44] P. L. Lions, Comm. Math. Phys., 109:1 (1987), 33 | DOI | MR | Zbl

[45] V. P. Maslov, Kompleksnye markovskie tsepi i kontinualnyi integral Feinmana, Nauka, M., 1976 | MR

[46] V. P. Maslov, “Uravneniya samosoglasovannogo polya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 11, ed. R. V. Gamkrelidze, VINITI, M., 1978, 153 | MR

[47] M. V. Karasev, V. P. Maslov, “Algebry s obschimi perestanovochnymi sootnosheniyami i ikh prilozheniya. II: Operatornye unitarno-nelineinye uravneniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 13, ed. R. V. Gamkrelidze, VINITI, M., 1979, 145

[48] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR

[49] I. V. Simenog, TMF, 30:3 (1977), 408 | MR

[50] S. A. Vakulenko, V. P. Maslov, I. A. Molotkov, A. I. Shafarevich, Dokl. RAN, 345:6 (1995), 743 | MR | Zbl

[51] I. A. Molotkov, S. A. Vakulenko, M. A. Bisyarin, Nelineinye lokalizovannye volnovye protsessy, Yanus-K, M., 1999 | MR

[52] S. I. Chernykh, TMF, 52:3 (1982), 491 | MR

[53] M. V. Karasev, A. V. Pereskokov, TMF, 79:2 (1989), 198 | MR

[54] M. V. Karasev, A. V. Pereskokov, TMF, 97:1 (1993), 78 | MR

[55] M. V. Karasev, A. V. Pereskokov, Izv. RAN. Ser. Matem., 65:5 (2001), 33 | DOI | MR | Zbl

[56] M. V. Karasev, A. V. Pereskokov, Izv. RAN. Ser. Matem., 65:6 (2001), 57 | DOI | MR | Zbl

[57] V. P. Maslov, Russ. J. Math. Phys., 3:2 (1995), 1

[58] V. P. Maslov, O. Yu. Shvedov, Metod kompleksnogo rostka v kvantovoi teorii polya, Izd-vo URSS, M., 1998 | MR

[59] V. G. Bagrov, V. V. Belov, I. M. Ternov, TMF, 50:3 (1982), 390 | MR

[60] V. G. Bagrov, V. V. Belov, I. M. Ternov, J. Math. Phys., 24:12 (1983), 2855 | DOI | MR

[61] V. G. Bagrov, V. V. Belov, A. Yu. Trifonov, “Kvaziklassicheski sosredotochennye sostoyaniya uravneniya Shredingera”, Lektsionnye zametki po teoreticheskoi i matematicheskoi fizike, T. 1. Ch. 1, ed. A. V. Aminova, Kaz. GU, Kazan, 1996, 15

[62] V. G. Bagrov, V. V. Belov, A. Yu. Trifonov, Ann. Phys., 246:2 (1996), 231 | DOI | MR | Zbl

[63] V. V. Belov, V. P. Maslov, DAN SSSR, 305:3 (1989), 574 | MR

[64] V. V. Belov, V. P. Maslov, DAN SSSR, 311:4 (1990), 849 | MR

[65] V. V. Belov, M. F. Kondrateva, TMF, 92:1 (1992), 41 | MR

[66] E. Shredinger, “Nepreryvnyi perekhod ot mikro- k makromekhanike”, Izbr. tr. po kvantovoi mekhanike, Nauka, M., 1976, 51

[67] R. J. Glauber, Phys. Rev., 130:6 (1963), 2529 ; 131:6, 2766 | DOI | MR | DOI | MR

[68] P. K. Rashevskii, UMN, 13:3 (1958), 3 | MR | Zbl

[69] J. R. Klauder, J. Math. Phys., 4:8 (1963), 1055 ; 1058 ; 5:2 (1964), 177 | DOI | MR | Zbl | DOI | MR | Zbl

[70] N. A. Chernikov, ZhETF, 53:3 (1967), 1006 | Zbl

[71] M. A. Malkin, V. I. Manko, Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, Nauka, M., 1979 | MR

[72] A. M. Perelomov, Obobschennye kogerentnye sostoyaniya i ikh primenenie, Nauka, M., 1987 | MR

[73] V. V. Belov, Kvaziklassicheskii predel uravnenii dvizheniya kvantovykh srednikh dlya nerelyativistskikh sistem s kalibrovochnymi polyami, Preprint No 58, Tomskii nauchnyi tsentr SO AN SSSR, Tomsk, 1989

[74] V. G. Bagrov, V. V. Belov, M. F. Kondratyeva, A. M. Rogova, A. Yu. Trifonov, J. Moscow Phys. Soc., 3 (1993), 309 | MR

[75] V. G. Bagrov, V. V. Belov, M. F. Kondrateva, TMF, 98:1 (1994), 48 | MR | Zbl

[76] V. V. Belov, M. F. Kondrateva, Matem. zametki, 56:6 (1994), 27 | MR | Zbl

[77] V. V. Belov, M. F. Kondrateva, Matem. zametki, 58:6 (1995), 803 | MR | Zbl

[78] V. P. Maslov, The Complex WKB Method for Nonlinear Equations. V. I. Linear Theory, Birkhauser, Basel–Boston–Berlin, 1994 | MR | Zbl

[79] H. Hayashi, P. I. Naumkin, SUT J. Math., 34:1 (1998), 13 | MR | Zbl

[80] J. Ginibre, G. Velo, Rev. Math. Phys., 12 (2000), 361 | DOI | MR | Zbl

[81] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR

[82] G. Beitman, A. Erdeii, Vysshie transtsendentnye funktsii. Funktsii Besselya. Funktsii parabolicheskogo tsilindra. Ortogonalnye mnogochleny, Nauka, M., 1966 | MR

[83] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1983 | MR

[84] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v teorii difraktsii korotkikh voln, Nauka, M., 1972 | MR

[85] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, T. 3, Mir, M., 1982 | MR

[86] M. M. Popov, “Funktsii Grina uravneniya Shredingera s kvadratichnym potentsialom”, Probl. matem. fiziki, no. 6, ed. V. M. Babich, LGU, L., 1973, 119

[87] V. V. Dodonov, I. A. Malkin, V. I. Man'ko, Int. J. Theor. Phys., 14:1 (1975), 37 | DOI | MR

[88] V. V. Belov, G. N. Serezhnikov, A. Yu. Trifonov, A. V. Shapovalov, “Simmetriya i differentsialnye uravneniya”, Tr. mezhdunar. konf. (Krasnoyarsk, 21–25 avgusta 2000 g.), ed. V. K. Andreev, 39

[89] V. D. Baranov, V. V. Belov, A. Yu. Trifonov, A. V. Shapovalov, “Noveishie problemy teorii polya”, Tr. Mezhdunar. letnei shkoly-seminara po sovremennym problemam teor. i matem. fiziki, ed. A. V. Aminova, Kaz. GU, Kazan, 2000, 22

[90] G. N. Serezhnikov, A. Yu. Trifonov, A. V. Shapovalov, Izv. Tomsk. gos. un-ta, 1 (2000), 39