Riemann Surfaces of Some Static Dispersion Models and Projective Spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 3, pp. 414-425 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the analytic continuation of the $S$-matrix elements, which are meromorphic functions of the energy $\omega $ in the complex plane with the cuts $(-\infty ,-1]$, $[+1,+\infty )$, from the physical sheet to nonphysical ones results in a system of nonlinear difference equations. A global analysis of this system is performed in the projective spaces $P_{N}$ and $P_{N+1}$. We discuss the connection between the spaces $P_{N}$ and $P_{N+1}$ and obtain some particular solutions of the initial system.
@article{TMF_2002_130_3_a2,
     author = {V. A. Meshcheryakov and D. V. Meshcheryakov},
     title = {Riemann {Surfaces} of {Some} {Static} {Dispersion} {Models} and {Projective} {Spaces}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {414--425},
     year = {2002},
     volume = {130},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a2/}
}
TY  - JOUR
AU  - V. A. Meshcheryakov
AU  - D. V. Meshcheryakov
TI  - Riemann Surfaces of Some Static Dispersion Models and Projective Spaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 414
EP  - 425
VL  - 130
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a2/
LA  - ru
ID  - TMF_2002_130_3_a2
ER  - 
%0 Journal Article
%A V. A. Meshcheryakov
%A D. V. Meshcheryakov
%T Riemann Surfaces of Some Static Dispersion Models and Projective Spaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 414-425
%V 130
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a2/
%G ru
%F TMF_2002_130_3_a2
V. A. Meshcheryakov; D. V. Meshcheryakov. Riemann Surfaces of Some Static Dispersion Models and Projective Spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 3, pp. 414-425. http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a2/

[1] A. L. Machovariani, A. G. Rysetsky, Nucl. Phys. A, 515 (1990), 621 | DOI

[2] R. Oehme, Phys. Rev. D, 42 (1990), 4209 ; Phys. Lett. B, 252 (1990), 14 ; J. Mod. Phys. A, 10 (1995), 1995 | DOI | MR | DOI | DOI

[3] G. F. Chew, F. E. Low, Phys. Rev., 101 (1956), 1570 | DOI | MR | Zbl

[4] V. A. Mescheryakov, Statisticheskie modeli v diskretnom podkhode, Preprint No R-2369, OIYaI, Dubna, 1965; В. И. Журавлев, В. А. Мещеряков, ЭЧАЯ, 5 (1974), 173

[5] G. Wanders, Nuovo Cimento, 23 (1962), 816 ; В. А. Мещеряков, ЖЭТФ, 51 (1966), 648 | DOI | MR

[6] V. A. Meshcheryakov, Solutions of nonlinear problems of dispersion relations in projective spaces. Proc. of Symp. in Ahrenshoop, Preprint PHE81-7, Institut fur Hoohenenergiephysik Akademie der Wisserschaften der DDR, Zeuthen, 1981, p. 44

[7] V. I. Zhuravlev, V. A. Mescheryakov, K. V. Rerikh, YaF, 10 (1969), 168 | MR

[8] V. A. Mescheryakov, DAN SSSR, 174 (1967), 1054

[9] M. Froissart, R. Omnes, Compt. Rend. Acad. Sci., 245 (1957), 2203 | MR | Zbl