New Relations in the Algebra of the Baxter $Q$-Operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 3, pp. 383-413 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider irreducible cyclic representations of the algebra of monodromy matrices corresponding to the $R$-matrix of the six-vertex model. At roots of unity, the Baxter $Q$-operator can be represented as a trace of a tensor product of $L$-operators corresponding to one of these cyclic representations, and this operator satisfies the $TQ$ equation. We find a new algebraic structure generated by these $L$-operators and consequently by the $Q$-operators.
@article{TMF_2002_130_3_a1,
     author = {A. A. Belavin and A. V. Odesskii and R. A. Usmanov},
     title = {New {Relations} in the {Algebra} of the {Baxter} $Q${-Operators}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {383--413},
     year = {2002},
     volume = {130},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a1/}
}
TY  - JOUR
AU  - A. A. Belavin
AU  - A. V. Odesskii
AU  - R. A. Usmanov
TI  - New Relations in the Algebra of the Baxter $Q$-Operators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 383
EP  - 413
VL  - 130
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a1/
LA  - ru
ID  - TMF_2002_130_3_a1
ER  - 
%0 Journal Article
%A A. A. Belavin
%A A. V. Odesskii
%A R. A. Usmanov
%T New Relations in the Algebra of the Baxter $Q$-Operators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 383-413
%V 130
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a1/
%G ru
%F TMF_2002_130_3_a1
A. A. Belavin; A. V. Odesskii; R. A. Usmanov. New Relations in the Algebra of the Baxter $Q$-Operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 3, pp. 383-413. http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a1/

[1] R. J. Baxter, Ann. Phys., 70 (1972), 193 ; 323 ; 76 (1973), 48 | DOI | MR | Zbl | MR | DOI | Zbl

[2] R. J. Baxter, J. H. H. Perk, H. Au-Yang, Phys. Lett. A, 128 (1988), 138 | DOI | MR

[3] H. Au-Yang, B. M. McCoy, J. H. H. Perk, S. Tang, M. L. Yan, Phys Lett. A, 123 (1987), 219 | DOI | MR

[4] R. J. Baxter, V. V. Bazhanov, J. H. H. Perk, Int. J. Mod. Phys. B, 4:5 (1990), 803 | DOI | MR

[5] V. V. Bazhanov, Yu. G. Stroganov, J. Stat. Phys., 51 (1990), 799 | DOI | MR

[6] V. O. Tarasov, Int. J. Mod. Phys. A, 7:1B. (1992), 963 | DOI | Zbl

[7] V. Pasquier, M. Gaudin, J. Phys. A: Math. Gen., 25 (1992), 5243 | DOI | MR | Zbl

[8] V. B. Kuznetsov, E. K. Sklyanin, J. Phys. A: Math. Gen., 31 (1998), 2241 | DOI | MR | Zbl

[9] E. K. Sklyanin, Bäcklund transformations and Baxter's $Q$-operator, E-print nlin.SI/0009009 | MR

[10] G. P. Pronko, Commun. Math. Phys., 212 (2000), 687 | DOI | MR | Zbl

[11] P. P. Kulish, N. Yu. Reshetikhin, Zapiski nauchnykh seminarov LOMI, 101, 1981, 101 ; P. P. Kulish, N. Yu. Reshetikhin, J. Soviet Math., 23 (1983), 2435 | MR | DOI

[12] M. Jimbo, Lett. Math. Phys., 11 (1986), 247 | DOI | MR | Zbl

[13] M. Jimbo, Topics from Representations of $U_{q}\bigl(\{ g\}\bigr)$ – An Introductory Guide to Physicists, Preprint Kyoto University, Japan, 1991 | MR

[14] T. Deguchi, K. Fabricius, B. M. McCoy, J. Stat. Phys., 102 (2001), 701 ; E-print cond-mat/9912141 | DOI | MR | Zbl

[15] S. Pakuliak, S. Sergeev, Relativistic Toda chain at root of unity. II: Modified Q-operator, ; С. М. Сергеев, Вполне интегрируемые дискретные системы в трех измерениях, Дисс. ...д.ф.-м.н., ОИЯИ, Дубна, 2001 E-print nlin.SI/0107062 | MR