Unitary Representations of the Quantum Lorentz Group and Quantum Relativistic Toda Chain
Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 3, pp. 355-382 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a group theory interpretation of the three types of $q$-Bessel functions. We consider a family of quantum Lorentz groups and a family of quantum Lobachevsky spaces. For three values of the parameter of the quantum Lobachevsky space, the Casimir operators correspond to the two-body relativistic open Toda-chain Hamiltonians whose eigenfunctions are the modified $q$-Bessel functions of the three types. We construct the principal series of unitary irreducible representations of the quantum Lorentz groups. Special matrix elements in the irreducible spaces given by the $q$-Macdonald functions are the wave functions of the two-body relativistic open Toda chain. We obtain integral representations for these functions.
@article{TMF_2002_130_3_a0,
     author = {M. A. Olshanetsky and V.-B. K. Rogov},
     title = {Unitary {Representations} of the {Quantum} {Lorentz} {Group} and {Quantum} {Relativistic} {Toda} {Chain}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {355--382},
     year = {2002},
     volume = {130},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a0/}
}
TY  - JOUR
AU  - M. A. Olshanetsky
AU  - V.-B. K. Rogov
TI  - Unitary Representations of the Quantum Lorentz Group and Quantum Relativistic Toda Chain
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 355
EP  - 382
VL  - 130
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a0/
LA  - ru
ID  - TMF_2002_130_3_a0
ER  - 
%0 Journal Article
%A M. A. Olshanetsky
%A V.-B. K. Rogov
%T Unitary Representations of the Quantum Lorentz Group and Quantum Relativistic Toda Chain
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 355-382
%V 130
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a0/
%G ru
%F TMF_2002_130_3_a0
M. A. Olshanetsky; V.-B. K. Rogov. Unitary Representations of the Quantum Lorentz Group and Quantum Relativistic Toda Chain. Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 3, pp. 355-382. http://geodesic.mathdoc.fr/item/TMF_2002_130_3_a0/

[1] M. Olshanetsky, A. Perelomov, Phys. Rep., 94 (1983), 313 | DOI | MR

[2] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1991 | MR | Zbl

[3] B. Kostant, Invent. Math., 48 (1978), 101 | DOI | MR | Zbl

[4] M. A. Semenov-Tyan-Shanskii, “Kvantovanie nezamknutykh tsepochek Tody”, Dinamicheskie sistemy – 7, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 16, ed. R. V. Gamkrelidze, VINITI, M., 1987, 194 | MR | Zbl

[5] A. Gerasimov et al., Int. J. Mod. Phys. A, 12 (1997), 2523 | DOI | MR | Zbl

[6] B. Feigin, E. Frenkel, Int. J. Mod. Phys. A. Suppl. 1A, 7 (1992), 197 | DOI | MR | Zbl

[7] R. Goodman, N. Wallach, Trans. Am. Math. Soc., 315 (1989), 1 | DOI | MR | Zbl

[8] T. Masuda, K. Mimachi, Y. Nakagami, M. Noumi, K. Ueno, C. R. Acad. Sci. Paris. Ser. 1. Math., 307 (1988), 559 | MR | Zbl

[9] L. Vaksman, Proc. Japan Acad. Ser. A Math. Sci., 65 (1989), 169 | DOI | MR

[10] L. L. Vaksman, L. I. Korogodskii, DAN SSSR, 304:5 (1989), 1036 | MR | Zbl

[11] M. A. Olshanetsky, V.-B. K. Rogov, J. Phys. A, 27 (1994), 4669 | DOI | MR | Zbl

[12] P. Podleś, S. L. Woronowicz, Commun. Math. Phys., 130 (1990), 381 | DOI | MR | Zbl

[13] S. Ruijsenaars, Commun. Math. Phys., 133 (1990), 217 | DOI | MR | Zbl

[14] M. A. Olshanetskii, V.-B. K. Rogov, Matem. sb., 187:10 (1996), 109 | DOI | MR

[15] M. A. Olshanetskii, V.-B. K. Rogov, Matem. sb., 188:8 (1997), 125 | DOI | MR

[16] V.-B. K. Rogov, The integral representations of the $q$-Bessel–Macdonald functions, ; Preprint ITEP-TH-06/01, 2001 E-print math.QA/0101259

[17] P. Etingof, Whittaker functions on quantum groups and q-deformed Toda operators, E-print math.QA/9901053 | MR

[18] A. Sevostyanov, Quantum deformation of Whittaker modules and Toda lattice, E-print math.QA/9905128

[19] S. Kharchev, D. Lebedev, M. Semenov-Tian-Shansky, Unitary representations of $U_{q}\bigl(sl(2,R)\bigr)$, the modular double, and the multiparticle q-deformed Toda chains, E-print hep-th/0102180 | MR

[20] I. M. Gelfand, M. I. Graev, N. Ya. Vilenkin, Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Fizmatgiz, M., 1962 | MR

[21] S. L. Woronowicz, S. Zakrzewski, Publ. RIMS Kyoto Univ., 28 (1992), 809 | DOI | MR | Zbl

[22] S. L. Woronowicz, S. Zakrzewski, Compos. Math., 90 (1994), 211 | MR | Zbl

[23] N. Reshetikhin, L. Takhtakhdzhyan, L. Faddeev, Algebra i analiz, 1:1 (1989), 178 | MR

[24] V. Drinfeld, Algebra i analiz, 1:6 (1989), 114 | MR

[25] N. Reshetikhin, Lett. Math. Phys., 20 (1990), 331 | DOI | MR | Zbl

[26] W. Pusz, Commun. Math. Phys., 152 (1993), 591 | DOI | MR | Zbl

[27] L. Dabrovsky, V. Dobrev, R. Floreanini, J. Math. Phys., 35 (1994), 971 | DOI | MR

[28] F. H. Jackson, Proc. London Math. Soc. (2), 2 (1905), 192 | DOI

[29] H. T. Koelink, Duke Math. J., 76 (1994), 483 | DOI | MR | Zbl

[30] A. Mironov, Quantum deformations of $\tau$-functions, bilinear identities and representation theory, E-print hep-th/9409190 | MR

[31] A. Morozov, L. Vinet, Free field representation of group element for simple quantum groups, E-print hep-th/9409093 | MR

[32] Dzh. Gasper, M. Rakhman, Bazisnye gipergeometricheskie ryady, Mir, M., 1993 | MR

[33] V.-B. K. Rogov, $q$-Bessel–Macdonald functions, ; Preprint ITEP-TH-56/00, 2000 E-print math.QA/0010170